MEMS nanoinjector for genetic modification of cells

May 13, 2014
This SEM (scanning electron microscope) image shows the nanoinjector next to a latex bead the same size as an egg cell. You can see the size of the nanoinjector and its lance compared to a cell. Credit: Brian Jensen/BYU

The ability to transfer a gene or DNA sequence from one animal into the genome of another plays a critical role in a wide range of medical research—including cancer, Alzheimer's disease, and diabetes.

But the traditional method of transferring genetic material into a new cell, called "microinjection," has a serious downside. It involves using a small glass pipette to pump a solution containing DNA into the nucleus of an egg cell, but the extra fluid can cause the cell to swell and destroy it—resulting in a 25 to 40 percent rate.

Now, thanks to the work of researchers Brigham Young University, there's a way to avoid cell death when introducing DNA into . In Review of Scientific Instruments, the team describes its microelectromechanical system (MEMS) nanoinjector, which was designed to inject DNA into mouse zygotes (single-cell embryos consisting of a fertilized egg).

"Essentially, we use electrical forces to attract and repel DNA—allowing injections to occur with a tiny, electrically conductive lance," explained Brian Jensen, associate professor in the Department of Mechanical Engineering at Brigham Young University. "DNA is attracted to the outside of the lance using positive voltage, and then the lance is inserted into a cell."

The MEMS nanoinjector's lance is incredibly small and no extra fluid is used with this technique, so undergo much less stress compared to the traditional microinjection process.

This ability to inject DNA into cells without causing cell death leads to "more efficient injections, which in turn reduces the cost to create a transgenic animal," according to Jensen.

One of the team's most significant findings is that it's possible to use the electrical forces to get DNA into the nucleus of the cell—without having to carefully aim the lance into the pronucleus (the cellular structure containing the cell's DNA). "This may enable future automation of the injections, without requiring manual ," Jensen says.

It may also mean that injections can be performed in animals with cloudy or opaque embryos. "Such animals, including many interesting larger ones like pigs, would be attractive for a variety of transgenic technologies," said Jensen. "We believe nanoinjection may open new fields of discovery in these animals."

As a next step, Jensen and colleagues are performing injections into cells in a cell culture using an array of lances that can inject hundreds of thousands of cells at once. "We expect the lance array may enable gene therapy using a culture of a patient's own cells," he noted.

Explore further: Researchers discover ancient virus DNA remnants necessary for pluripotency in humans

More information: "A Self-Reconfiguring Metamorphic Nanoinjector for Injection into Mouse Zygotes" Quentin T. Aten, Brian D. Jensen, Sandra H. Burnett, and Larry L. Howell, Review of Scientific Instruments Tuesday, May 13, 2014 ( DOI: 10.1063/1.4872077 ). http://scitation.aip.org/content/aip/journal/rsi/85/5/10.1063/1.4872077

add to favorites email to friend print save as pdf

Related Stories

Cell resiliency surprises scientists

Apr 24, 2014

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Recommended for you

Molecular beacons shine light on how cells 'crawl'

22 hours ago

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
5 / 5 (1) May 13, 2014
"We expect the lance array may enable gene therapy using a culture of a patient's own cells," he noted.

Yes please!
betterexists
3 / 5 (1) May 13, 2014
Certainly, one of the greatest Innovations befitting the Modern times!
Possibilities in Embryology Are Endless.
betterexists
5 / 5 (1) May 14, 2014
2⅓ year-old Info; On youtube at watch?v=j4AuPfYcQiA