Researchers describe oxygen's different shapes

Mar 13, 2014 by Tracey Peake
This image shows the nuclear shape of the ground and first excited state of oxygen-16. Credit: Dean Lee, NC State University

(Phys.org) —Oxygen-16, one of the key elements of life on earth, is produced by a series of reactions inside of red giant stars. Now a team of physicists, including one from North Carolina State University, has revealed how the element's nuclear shape changes depending on its state, even though other attributes such as spin and parity don't appear to differ. Their findings may shed light on how oxygen is produced.

Carbon and oxygen are formed when helium burns inside of red giant stars. Carbon-12 forms when three helium-4 nuclei combine in a very specific way (called the triple alpha process), and oxygen-16 is the combination of a carbon-12 and another helium-4 nucleus.

Although physicists knew what oxygen-16 was made of, they were still puzzled by the fact that both the ground and first excited states of the element had zero spin and positive parity. A similar situation occurs in carbon-12 with the ground state and second zero-spin state known as the Hoyle state. At room temperature, only the ground state of oxygen-16 is seen due to the very cold temperature compared to nuclear energies. But the excited states of oxygen-16 become important for the helium-burning reactions inside stars.

"It's expected that oxygen-16 would have zero spin and positive parity as its ground state," says NC State physicist Dean Lee, team member and co-author of a paper describing the research. "What is unexpected is that the first also has these qualities. It made us wonder what the real difference is between the states, which required looking at the structure of the eight protons and eight neutrons in oxygen-16. We had addressed a similar puzzle for the ground state and Hoyle state of carbon-12."

Lee, with colleagues Evgeny Epelbaum, Hermann Krebs, Timo Laehde, and Ulf-G. Meissner, had previously developed a new method for describing all the possible ways that protons and neutrons can bind with one another inside nuclei such as carbon-12 and the Hoyle state. They used an approach called "effective field theory" formulated on a complex numerical lattice that allows the researchers to run simulations that show how particles interact, and so reveal the structure of the nuclei.

In this work, the same team plus Mississippi State physicist Gautam Rupak, found their lattice revealed that although both the ground and first excited states of oxygen-16 "look" the same in terms of spin and parity, they are in fact quite different structurally. In the , the protons and neutrons are arranged in a tetrahedral configuration of four alpha clusters containing two protons and two neutrons each. For the first excited state, the alpha clusters are arranged in a square.

"The production of oxygen-16 from -12 is still very poorly understood from both theoretical and experimental studies," Lee says. "These lattice simulations give us our first look at the structure of low-energy states of -16."

The results appear online March 12 in Physical Review Letters.

Explore further: Pseudoparticles travel through photoactive material

More information: "Ab Initio Calculation of the Spectrum and Structure of 16O" by Dean Lee et al Published: March 12, 2014 in Physical Review Letters.

Abstract:
We present ab initio lattice calculations of the low-energy even-parity states of 16O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.

Related Stories

Researchers reveal structure of carbon's 'Hoyle state'

Dec 10, 2012

(Phys.org)—A North Carolina State University researcher has taken a "snapshot" of the way particles combine to form carbon-12, the element that makes all life on Earth possible. And the picture looks like ...

Carbon, carbon everywhere, but not from the Big Bang

May 11, 2011

As Star Trek is so fond of reminding us, we're carbon-based life forms. But the event that jump-started the universe, the Big Bang, didn't actually produce any carbon, so where the heck did it – and we – come from? ...

On the origin of life's most crucial isotope

Oct 12, 2012

Since the Big Bang, the universe has been evolving. From the formations of simple protons and neutrons to the wide breadth of elements and molecules known today, it is ever growing in complexity and variety. And now, nuclear ...

Fundamental question on how life started solved?

May 09, 2011

For carbon, the basis of life, to be able to form in the stars, a certain state of the carbon nucleus plays an essential role. In cooperation with US colleagues, physicists from the University of Bonn and Ruhr-Universitat ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.