Thermotropic phase boundaries in classic ferroelectrics

February 4, 2014
(left) Nanoscale scanning X-ray diffraction spatial map of the (220) Mc peak in BaTiO3 and (right) diffraction image of spot 2; scale bar 8 um. This projection image is of the entire structure, which exists a few microns into the material.

( —Novel monoclinic subphases in ferroelectric BaTiO3 were observed by ANL's Center for Nanoscale Materials users from The Pennsylvania State University in collaboration with CNM's X-Ray Microscopy Group and scientists from the Center for Nanophase Materials Sciences.

The newly discovered low-symmetry intermediate phases are found to be locally stabilized near thermotropic phase boundaries in simple ferroelectrics, and they exhibit large enhancements in nonlinear optical and piezoelectric ;property coefficients. The findings reveal that phase transitions in ferroelectrics are intimately coupled to the underlying domain microstructure. Nanoscale scanning X-ray diffraction measurements harnessing the unique structural sensitivity of the CNM Hard X-Ray Nanoprobe unambiguously demonstrated the intrinsic monoclinic nature of the subphase. The discovery presents unique opportunities for the design of "green" high-performance nanoscale energy .

Even in lead-free BaTiO3 and KNbO3, classic materials that have been known and studied for more than 60 years, this new observation shows that domains can lend a thermotropic character to their otherwise well-known . This leads to the emergence of intermediate monoclinic phases in a wide temperature range around the conventional interferroelectric transitions.

As this phenomenon is due to the mechanical and dipolar interactions between competing ferroelectric-ferroelastic domains in a complex domain microstructure, advanced nanoscale-resolved multi-technique measurements in the same spatial location are required to properly reveal the underlying physics on a microscopic level. This work shows that in the stabilized intermediate phases, both the piezoelectric and the nonlinear optical properties can be strongly enhanced and even newly induced. Since the mechanism of symmetry lowering through stresses and fields is in principle universal to all nontriclinic ferroelectric crystal systems, these results suggest a host of possibilities for the design of high-performance phases that can create unique nanoscale energy materials from simple lead-free .

The Hard X-ray Nanoprobe beamline is located at Argonne's Advanced Photon Source.

Explore further: Argonne's Hard X-ray Nanoprobe provides new capability to study nanoscale materials

More information: "Thermotropic phase boundaries in classic ferroelectrics." Tom T.A. Lummen, Yijia Gu, Jianjun Wang, et al. Nature Communications 5, Article number: 3172 DOI: 10.1038/ncomms4172

Related Stories

Structural consequences of nanolithography

August 11, 2011

( -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the nanoscale lithography ...

Small defects mean big problems for industrial solar cells

October 13, 2011

Nanoscale clustering of metal impurities at intragranular dislocations within industrial mc-Si solar cells have been observed by users from the Massachusetts Institute of Technology working with the Center for Nanoscale Materials ...

Large wave-vector phonon modes in silicon nanomembranes

July 16, 2013

( —Modified large wave-vector phonons in semiconductor membranes via hard X-ray thermal diffuse scattering (TDS) were observed that provide new insight into the fundamental thermal and electronic properties of ...

Imaging ferroelectric domains

January 31, 2014

( —When thin films of ferroelectric materials are grown on single-crystal substrates, they can develop regions of aligned polarization—called "domains"—that often adopt complex patterns. Manipulation of ferroelectric ...

Recommended for you

Touchless displays superseding touchscreens?

October 2, 2015

While touchscreens are practical, touchless displays would be even more so. That's because, despite touchscreens having enabled the smartphone's advance into our lives and being essential for us to be able to use cash dispensers ...

Physicists map the strain in wonder material graphene

September 29, 2015

This week, an international group of scientists is reporting a breakthrough in the effort to characterize the properties of graphene noninvasively while acquiring information about its response to structural strain.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.