Nuclear-atomic overlap for the isotope thorium-229

Feb 17, 2014 by Phillip F. Schewe
The dense spectral line structure of neutral thorium (Th I) as seen in a hollow cathode lamp observed with an echelle spectrograph. This is a double spectrum in which the visible spectrum is cut into horizontal strips to expand the wavelength range. Credit: Observatoire de Haute-Provence, France.

More than 99.9% of the mass of any atom is concentrated into a quadrillionth of its volume, the part occupied by the nucleus. Unimaginably small, dense and energetic, atomic nuclei are governed by laws quite distinct from those that regulate atomic electrons, which constitute the outer part of atoms and which are immediately responsible for light, chemistry and thus life. Yet there are sporadic regions of contact between these disparate realms. JQI Adjunct Fellow Marianna Safronova and her collaborators (1) have been exploring one area of nuclear-atomic overlap for the isotope thorium-229. This isotope is a candidate for a new type of atomic clock and quantum information processor.

A ticking time bomb

The quantum states of are usually separated in energy by thousands or millions of electron volts (eV), compared to the few-electron-volt energy range characteristic of atomic electrons. This is reflected in the "megatons of TNT" scale for nuclear vs. chemical explosions, and the radiation associated with jumps between nuclear quantum states lying in the x-ray or gamma-ray regions of the spectrum, in contrast to the optical realm of electronic transitions.

By some strange accident of nuclear physics, there is one nucleus, thorium-229, which possesses a nuclear excited state (isomer) that lies just a few eV above the ground state. That is, for Th-229 there exists a nuclear transition that looks more like an atomic transition. This isomer has not yet been detected directly, but the state is known to have a lifetime of about six hours. This may not sound like much—-not even a full season of "Downton Abbey"—-but the lifetime of the "clock" state of the recently-announced world's most accurate clock state is about two minutes (1). The lifetime of the clock state is a key factor in the performance of atomic clocks—-the longer, the better—-and the tiny size of nuclear isomers suggests that they may be far less susceptible than electronic clock states to stray fields, blackbody radiation, and other environmental effects that degrade accuracy and stability.

Solitary confinement

Indeed, the remarkable isolation of the isomers is reflected in the poor state of knowledge of their properties. The work of Safronova et al. has resulted in a new determination of the magnetic and electric moments of the thorium-229 nuclear ground state. This work shows that previous measurements, which were most demanding, were in error by up to 25%.

There are thousands of spectral lines in the visible spectrum of thorium – indeed, the spectrum is so dense that thorium lamps are often used as wavelength calibration standards for solar and stellar astronomy.

To reduce the complexity of this system, Safronova et al. treated the much simpler spectrum of the ion Th3+ (Th IV), an ion with only one electron outside a closed shell. This ion had previously been laser-cooled and trapped by Campbell et al. (3). The wavelengths of its emission lines depend weakly upon the magnetic moment and the electric quadrupole moment of the nucleus, a phenomenon commonly called "hyperfine structure". By performing precise, first principles calculations of of thorium, Safronova et al. were able to extract the values of the nuclear magnetic and electric moments from the experimentally-measured wavelengths.

Accurate knowledge of this data is critical to building an "electronic bridge" (4) that would facilitate laser control of nuclear states. Proposals for such a bridge involve engineering the intrinsic coupling between electrons and nuclei so that laser control of electronic states can be extended to nuclear states.

- See more at:… sthash.Vw8hqT28.dpuf

Explore further: New filter could advance terahertz data transmission

More information: M. S. Safronova, U. I. Safronova, A. G. Radnaev, C. J. Campbell, and A. Kuzmich, "Magnetic dipole and electric quadrupole moments of the 229Th nucleus", Phys. Rev. A 88, 060501(R) (2013)

B. J. Bloom, et al. "An optical lattice clock with accuracy and stability at the 10−18 level", Nature 506, 71-75 (2014). - See more at:… sthash.ccGJ8GX7.dpuf

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, "Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer", Phys. Rev. Lett. 106, 223001 (2011).

E. Peik and C. Tamm, "Nuclear laser spectroscopy of the 3.5 eV transition in Th-229", Europhys. Lett. 61, 181 (2003).

add to favorites email to friend print save as pdf

Related Stories

Proposed gamma-ray laser could emit 'nuclear light'

May 02, 2011

( -- Building a nuclear gamma-ray laser has been a challenge for scientists for a long time, but a new proposal for such a device has overcome some of the most difficult problems. In the new study, Eugene Tkalya ...

Physicists propose a way to make atomic clocks more accurate

Nov 07, 2012

(—Physicists Andrei Derevianko of the University of Nevada and Victor Flambaum and Vladimir Dzuba of the University of New South Wales have proposed in a paper published in Physical Review Letters a way to imp ...

Breakthrough unravels photoelectric effect

Dec 19, 2013

An international team including theorists from the Department of Electromagnetic Processes and Atomic Nuclei Interactions of the MSU Institute of Nuclear Physics managed, for the first time in the history of photoelectric ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

4.5 / 5 (2) Feb 17, 2014
Laser control of nuclear states, blimey this opens up all sorts of Sci Fi like potentials of the weirdest and potentially most dangerous kind, interesting article...
5 / 5 (1) Feb 18, 2014
Like so many articles, here on, the editorial standards for scientific accuracy (or basic proof-reading) often are suspect, and/or downright misleading. I am not speaking of the citations from the various scientific publications (which, depending on the source, may themselves be dubious). I am speaking of the editor's personal summary of the reports.

In reading this article, one could quite easily conclude that gamma rays (whether of low or high energy) are exclusively of nuclear origin. This is not the case. In fact the highest energy gamma rays recorded (long duration gamma ray bursts) are due to processes that are absolutely inconsistent with energy transitions within atomic nuclei, according to the quantum field theory and the standard model.

Furthermore, there are many non-nuclear (i.e electron) processes that produce gamma rays...such as gamma radiation produced in electron bremsstrahlung interactions, inverse Compton scattering, synchrotron radiation, and others.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.