Physicists propose a way to make atomic clocks more accurate

November 7, 2012 by Bob Yirka weblog

(Phys.org)—Physicists Andrei Derevianko of the University of Nevada and Victor Flambaum and Vladimir Dzuba of the University of New South Wales have proposed in a paper published in Physical Review Letters a way to improve on the accuracy of atomic clocks. They suggest stripping away electrons from ions to reduce the negative effects of stray fields that reduce the performance of current atomic clocks.

Researchers continue to look for ways to increase the accuracy of atomic clocks because higher accuracy would allow for finer measurements of very small changes in the values of the physical constants that underlie some of the most basic principles of physics. One example is the – a more of its changes might lead the way to the development of a .

Recent research has focused on switching to a nuclear clock as theories have indicated they might be more accurate than atomic clocks. Practical limitations, such as the high degree of difficulty in calculating frequency transitions and the danger of working with have prevented the development of such clocks however, which is what led this new effort to see if the model for an atomic clock could be improved.

are based on using atomic transitions as a means of defining a time standard and are accurate to one part in 1017. The goal is to improve that to 1019. To achieve such accuracy, the researchers propose stripping away some of the electrons of a particular ion to cause the remaining electrons to bind tighter to the nucleus. Doing so, they reason would reduce the stray fields that can creep into the electromagnetic trap used to measure the electronic transition, which skew the results. Based on that assumption, they've calculated that the observation of the electron transmission of a bismuth-209 ion would produce the desired accuracy.

The researchers acknowledge that building such a clock would be difficult, but suggest it should be possible and argue that it would be much more practical than trying to build and work with a nuclear clock. They conclude by suggesting that the time has come to put more effort into improving the atomic clock and less into nuclear clock research.

Explore further: Proposed nuclear clock may keep time with the Universe

More information: Highly Charged Ions as a Basis of Optical Atomic Clockwork of Exceptional Accuracy, Phys. Rev. Lett. 109, 180801 (2012) DOI: 10.1103/PhysRevLett.109.180801

Abstract
We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f12 ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

via PhysicsWorld

Related Stories

Proposed nuclear clock may keep time with the Universe

March 8, 2012

(PhysOrg.com) -- A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years ...

Portable Precision: A New Type of Atomic Clock

June 11, 2009

The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. ...

Portable Precision: A New Type of Atomic Clock

December 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Optical Atomic Clock: A long look at the captured atoms

February 5, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Recommended for you

Making ferromagnets stronger by adding non-magnetic elements

June 23, 2017

Researchers at the U.S. Department of Energy's Ames Laboratory discovered that they could functionalize magnetic materials through a thoroughly unlikely method, by adding amounts of the virtually non-magnetic element scandium ...

Peering at the crystal structure of lithium

June 23, 2017

Elemental metals usually form simple, close-packed crystalline structures. Though lithium (Li) is considered a typical simple metal, its crystal structure at ambient pressure and low temperature remains unknown.

A 100-year-old physics problem has been solved

June 22, 2017

At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. The discovery has implications in telecommunications. Working around ...

Ultra-thin camera creates images without lenses

June 22, 2017

Traditional cameras—even those on the thinnest of cell phones—cannot be truly flat due to their optics: lenses that require a certain shape and size in order to function. At Caltech, engineers have developed a new camera ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

BloodSpill
not rated yet Nov 07, 2012
According to Wikipedia, there is possible doubt the fine structure constant is a constant.

As ever with more accurate clocks, how do we know it's more accurate than the last one? I couldn't guess at the web search keywords needed for that answer.

http://en.wikiped...stant.3F

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.