The Joint Quantum Institute (JQI) is a publicly funded research organization dedicated to basic and applied research in quantum physics, with particular emphasis on quantum information science. Located on the campus of the University of Maryland (UMD) at College Park, Maryland, Joint Quantum Institute was created on September 11, 2006 by a joint memorandum of understanding among University of Maryland, the National Institute of Standards and Technology (NIST) and the Laboratory for Physical Sciences. It has a base annual budget of approximately $6 million, which supports both theory and experimental research by Joint Quantum Institute’s 27 Fellows, associated graduate students and postdoctoral scientists. Joint Quantum Institute’s co-directors are Steve Rolston, Professor of Physics at University of Maryland, and Charles W. Clark, Adjunct Professor of Physics at University of Maryland. Approximately half the Joint Quantum Institute fellows are from University of Maryland and half from NIST. One is from the Laboratory for Physical Sciences, a university-government facility adjacent to the UMD College Park campus.

Website
http://jqi.umd.edu/
Wikipedia
http://en.wikipedia.org/wiki/Joint_Quantum_Institute

Some content from Wikipedia, licensed under CC BY-SA

Subscribe to rss feed

Glass fibers and light offer new control over atomic fluorescence

Electrons inside an atom whip around the nucleus like satellites around the Earth, occupying orbits determined by quantum physics. Light can boost an electron to a different, more energetic orbit, but that high doesn't last ...

Cold atoms offer a glimpse of flat physics

These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting.

Fast-flowing electrons may mimic astrophysical dynamos

A powerful engine roils deep beneath our feet, converting energy in the Earth's core into magnetic fields that shield us from the solar wind. Similar engines drive the magnetic activity of the sun, other stars and even other ...

Modified superconductor synapse reveals exotic electron behavior

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will ...

Pristine quantum light source created at the edge of silicon chip

The smallest amount of light you can have is one photon, so dim that it's pretty much invisible to humans. While imperceptible, these tiny blips of energy are useful for carrying quantum information around. Ideally, every ...

Complexity test offers new perspective on small quantum computers

State-of-the-art quantum devices are not yet large enough to be called full-scale computers. The biggest comprise just a few dozen qubits—a meager count compared to the billions of bits in an ordinary computer's memory. ...

Quantum gas reveals first signs of path-bending monopole

Magnets, whether in the form of a bar, horseshoe or electromagnet, always have two poles. If you break a magnet in half, you'll end up with two new magnets, each with its own magnetic north and south.

Atoms may hum a tune from grand cosmic symphony

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion ...

Two-toned light pattern creates steep quantum walls for atoms

Exotic physics can happen when quantum particles come together and talk to each other. Understanding such processes is challenging for scientists, because the particle interactions can be hard to glimpse and even harder to ...

New hole-punched crystal clears a path for quantum light

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the ...

page 1 from 9