Mechanism of dengue virus entry into cells revealed

Feb 17, 2014
How dengue virus enters cells of our immune system: a 3D projection of a cell expressing on its surface DC-SIGN (stained in blue with antibodies) that have captured many dengue viruses (in green or green combined with red) and internalized dengue viruses (shown only in red). Credit: P.Liu/UNC

Dengue fever, an infectious tropical disease caused by a mosquito-borne virus, afflicts millions of people each year, causing fever, headache, muscle and joint pains and a characteristic skin rash. In some people the disease progresses to a severe, often fatal, form known as dengue hemorrhagic fever. Despite its heavy toll, the prevention and clinical treatment of dengue infection has been a "dramatic failure in public health compared to other infectious diseases like HIV," said Ping Liu of the University of North Carolina at Chapel Hill.

Now, new research by Liu and her colleagues, to be presented at the 58th Annual Biophysical Society Meeting, which takes place in San Francisco from Feb. 15-19, could offer vital insight into the mechanism of dengue virus entry into cells—and aid vaccine and clinical drug development.

Specifically, Liu, a postdoctoral scholar in the laboratories of cell biologist Ken Jacobson and biophysical chemist Nancy Thompson, along with expert Aravinda de Silva, used high-resolution microscopes to examine the expression of a particular protein, known as DC-SIGN (for dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin), on the surface of immune system cells called .

The normal role of DC-SIGN is to capture pathogens so that fragments of those pathogens can be presented as antigens on the surface of the dendritic cells. Such antigens then are recognized by T cells—the workhorse cells of the immune system—"which is one of the first steps in the normal immune response," Liu said.

While it has been known for some time that dengue used DC-SIGN to attach to cells, Liu and her colleagues used high-resolution microscopy to study exactly how the viruses used the protein to gain entry into cells. "DC-SIGN has a unique carbohydrate recognition domain on its extracellular portion, which binds to all sorts of carbohydrates on pathogens," she explained. (Other pathogens, including HIV and the bacterium that causes tuberculosis, are likely to use the same back door).

"An effective medication or vaccine should stop the process of entry into ," Liu said. To that end, she said, de Silva and his colleagues have identified strong neutralization antibodies that block infection. "We are looking into the details of how those neutralization antibodies act and the role of DC-SIGN in the neutralization process."

By identifying the mechanism of antibody neutralization, Liu and colleagues hope to advance the development of vaccines for Dengue virus infections.

Explore further: Brazil reports 573 deaths from dengue this year

More information: The presentation "Dengue Virus Infection Mediated by DC-SIGN" by Ping Liu, Marc R. Ridilla, Aravinda M. de Silva, Nancy L. Thompson and Ken Jacobson will be at noon on Monday, February 17, 2014 in Room 305 in San Francisco's Moscone Convention Center. Abstract: tinyurl.com/mj5j2nz

add to favorites email to friend print save as pdf

Related Stories

Mast cells give clues in diagnosis, treatment of dengue

Apr 30, 2013

A protein produced by mast cells in the immune system may predict which people infected with dengue virus will develop life-threatening complications, according to researchers at Duke Medicine and Duke-National University ...

Recommended for you

Brand new technology detects probiotic organisms in food

6 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

6 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0