Human arm sensors make robot smarter (w/ Video)

Jan 16, 2014
The Georgia Tech system eliminates the vibrations by using sensors worn on a controller's forearm. The devices send muscle movements to a computer, which provides the robot with the operator's level of muscle contraction. Credit: Georgia Institute of Technology

Using arm sensors that can "read" a person's muscle movements, Georgia Institute of Technology researchers have created a control system that makes robots more intelligent. The sensors send information to the robot, allowing it to anticipate a human's movements and correct its own. The system is intended to improve time, safety and efficiency in manufacturing plants.

It's not uncommon to see large, fast-moving robots on manufacturing floors. Humans seldom work next to them because of safety reasons. Some jobs, however, require people and robots to work together. For example, a person hanging a car door on a hinge uses a lever to guide a carrying the door. The power-assisting device sounds practical but isn't easy to use.

"It turns into a constant tug of war between the person and the robot," explains Billy Gallagher, a recent Georgia Tech Ph.D. graduate in robotics who led the project. "Both react to each other's forces when working together. The problem is that a person's is never constant, and a robot doesn't always know how to correctly react."

For example, as human operators shift the lever forward or backward, the robot recognizes the command and moves appropriately. But when they want to stop the movement and hold the lever in place, people tend to stiffen and contract muscles on both sides of their arms. This creates a high level of co-contraction.

"The robot becomes confused. It doesn't know whether the force is purely another command that should be amplified or 'bounced' force due to muscle co-contraction," said Jun Ueda, Gallagher's advisor and a professor in the Woodruff School of Mechanical Engineering. "The robot reacts regardless."

This video is not supported by your browser at this time.

The robot responds to that bounced force, creating vibration. The human operators also react, creating more force by stiffening their arms. The situation and vibrations become worse.

"You don't want instability when a robot is carrying a heavy door," said Ueda.

The Georgia Tech system eliminates the vibrations by using sensors worn on a controller's forearm. The devices send to a computer, which provides the robot with the operator's level of . The system judges the operator's physical status and intelligently adjusts how it should interact with the human. The result is a robot that moves easily and safely.

Using arm sensors that can "read" a person's muscle movements, Georgia Institute of Technology researchers (professor Jun Ueda, left, and Billy Gallagher) have created a control system that makes robots more intelligent. The sensors send information to the robot, allowing it to anticipate a human's movements and correct its own. The system is intended to improve time, safety and efficiency in manufacturing plants. Credit: Georgia Institute of Technology

"Instead of having the robot react to a human, we give it more information," said Gallagher. "Modeling the operator in this way allows the robot to actively adjust to changes in the way the operator moves."

Ueda will continue to improve the system using a $1.2 million National Robotics Initiative grant supported by a National Science Foundation grant to better understand the mechanisms of neuromotor adaptation in human-robot physical interaction. The research is intended to benefit communities interested in the adaptive shared control approach for advanced manufacturing and process design, including automobile, aerospace and military.

"Future robots must be able to understand people better," Ueda said. "By making robots smarter, we can make them safer and more efficient."

Explore further: Future US Navy: Robotic sub-hunters, deepsea pods

Related Stories

The human touch makes robots defter

Nov 07, 2013

Cornell engineers are helping humans and robots work together to find the best way to do a job, an approach called "coactive learning."

Humanoid robot "Russell" engages children with autism

Nov 19, 2013

With support from the National Science Foundation (NSF), mechanical and computer engineer Nilanjan Sarkar and psychologist Zachary Warren of Vanderbilt University have developed a learning environment for ...

Robots learn from each other on 'Wiki for robots'

Jan 13, 2014

Now it's not just people – robots are also connected by internet thanks to RoboEarth. Next week, after four years of research, scientists at Eindhoven University of Technology (TU/e), Philips and four other ...

Recommended for you

Future US Navy: Robotic sub-hunters, deepsea pods

Mar 28, 2015

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Festo has BionicANTs communicating by the rules for tasks

Mar 27, 2015

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Virtual robotization for human limbs

Mar 26, 2015

Recent advances in computer gaming technology allow for an increasingly immersive gaming experience. Gesture input devices, for example, synchronise a player's actions with the character on the screen. Entertainment ...

Robots on reins could be the 'eyes' of firefighters

Mar 25, 2015

Researchers at King's College London have developed revolutionary reins that enable robots to act like guide dogs, which could enable that firefighters moving through smoke-filled buildings could save vital ...

Robot revolution will change world of work

Mar 24, 2015

Robots will fundamentally change the shape of the workforce in the next decade but many industries will still need a human touch, a QUT Future of Work Conference has heard.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.