Tiny lasers light up future electronics

November 18, 2013
Pattern of light emitted from a nanowire laser.

(Phys.org) —Faster, smaller electronics are one step closer with researchers from The Australian National University successfully making the first room temperature lasers from gallium arsenide nanowires.

"The wires and lasers will lead to much faster, much lighter computers because light travels faster than , allowing us to process data much faster," explains Mr Dhruv Saxena from the Research School of Physics & Engineering.

"The lasers in use at the moment often require a lot of processing steps to produce a nice cavity and mirrors in order to emit light," explains Saxena, who went on to explain these older lasers also are much bulkier.

Saxena authored a paper in Nature Photonics explaining how to make smaller lasers using nanowires – solid wires only several billionths of a metre in diameter.

These wires get 'grown' in the lab, says Dr Sudha Mokkapati, an ANU-based ARC Super Science Fellow who co-authored the paper with Saxena.

"We have a substrate covered in gold particles which act as catalysts, or seeds."

"We provide gases containing gallium and arsenic and raise the temperature of the substrate up to 750°C. At these temperatures the elements react and start growing."

Nanowires standing on substrate.

"It's crystal growth," adds Saxena. "The substrate provides the direction of the growth, so they grow straight up, standing vertically on the substrate instead of growing in random directions."

"The shape of the nanowire confines light along its axis. The ends of the nanowire are like tiny mirrors that bounce light back and forth along the wire and the gallium arsenide amplifies it. After a certain threshold, we get laser light," says Dr Mokkapati.

Now that gallium arsenide nanowire lasers have been shown to work at , Saxena hopes this research will lead to cheaper, faster and lighter computers.

"We hope our lasers could be used in photonic circuits on a chip that enable computing using ," concludes Professor Chennupati Jagadish, who leads this research.

Explore further: GaAs self-assembled nanowires could make chips smaller and faster

More information: Optically pumped room-temperature GaAs nanowire lasers, DOI: 10.1038/nphoton.2013.303

Related Stories

Team demonstrates quantum dots that assemble themselves

April 16, 2013

(Phys.org) —Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Nanowires grown on graphene have surprising structure

April 23, 2013

(Phys.org) —When a team of University of Illinois engineers set out to grow nanowires of a compound semiconductor on top of a sheet of graphene, they did not expect to discover a new paradigm of epitaxy.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.