Tiny lasers light up future electronics

Nov 18, 2013
Pattern of light emitted from a nanowire laser.

(Phys.org) —Faster, smaller electronics are one step closer with researchers from The Australian National University successfully making the first room temperature lasers from gallium arsenide nanowires.

"The wires and lasers will lead to much faster, much lighter computers because light travels faster than , allowing us to process data much faster," explains Mr Dhruv Saxena from the Research School of Physics & Engineering.

"The lasers in use at the moment often require a lot of processing steps to produce a nice cavity and mirrors in order to emit light," explains Saxena, who went on to explain these older lasers also are much bulkier.

Saxena authored a paper in Nature Photonics explaining how to make smaller lasers using nanowires – solid wires only several billionths of a metre in diameter.

These wires get 'grown' in the lab, says Dr Sudha Mokkapati, an ANU-based ARC Super Science Fellow who co-authored the paper with Saxena.

"We have a substrate covered in gold particles which act as catalysts, or seeds."

"We provide gases containing gallium and arsenic and raise the temperature of the substrate up to 750°C. At these temperatures the elements react and start growing."

Nanowires standing on substrate.

"It's crystal growth," adds Saxena. "The substrate provides the direction of the growth, so they grow straight up, standing vertically on the substrate instead of growing in random directions."

"The shape of the nanowire confines light along its axis. The ends of the nanowire are like tiny mirrors that bounce light back and forth along the wire and the gallium arsenide amplifies it. After a certain threshold, we get laser light," says Dr Mokkapati.

Now that gallium arsenide nanowire lasers have been shown to work at , Saxena hopes this research will lead to cheaper, faster and lighter computers.

"We hope our lasers could be used in photonic circuits on a chip that enable computing using ," concludes Professor Chennupati Jagadish, who leads this research.

Explore further: Precision gas sensor could fit on a chip

More information: Optically pumped room-temperature GaAs nanowire lasers, DOI: 10.1038/nphoton.2013.303

Related Stories

Nanowires grown on graphene have surprising structure

Apr 23, 2013

(Phys.org) —When a team of University of Illinois engineers set out to grow nanowires of a compound semiconductor on top of a sheet of graphene, they did not expect to discover a new paradigm of epitaxy.

Team demonstrates quantum dots that assemble themselves

Apr 16, 2013

(Phys.org) —Scientists from the U.S. Department of Energy's National Renewable Energy Laboratory and other labs have demonstrated a process whereby quantum dots can self-assemble at optimal locations in nanowires, a breakthrough ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.