Malaria mosquito groups surprisingly do mix and match, new study finds

November 27, 2013
Researchers rethinking malaria mosquitos
The study found that the African malaria mosquito Anopheles gambiae has significant exchange of genes between the two groups. Credit: Anthony "Anton" Cornel/UC Davis

( —A new study by researchers at the University of California, Davis, and in Mali finds that many of the assumptions underlying current thinking about the genetics of two key subgroups of malaria mosquitoes are false.

For the past decade, scientists around the world have intensely studied the two forms of the African , Anopheles gambiae. It was thought that the mosquitoes in the two subgroups—known as the M and S forms—rarely mated outside of their groups, and, just this year, the two were recognized as distinct species.

The new study shows, however, that although the M and S subgroups have developed distinct genetic profiles, there actually continues to be significant exchange of genes between the two groups due to crossbreeding. These findings appear online in the Nov. 19 Early Edition of the Proceedings of the National Academy of Sciences.

Developing an accurate picture of gene flow through matings within and between these two mosquito groups could prove key to preventing the spread of . The deadly mosquito-transmitted disease annually kills more than 660,000 people around the world, mostly in Africa.

In this study, lead authors Gregory Lanzaro and Yoosook Lee, both medical entomologists in the UC Davis School of Veterinary Medicine, and their colleagues showed that hybridization, or mating, between the M and S groups was far higher than previously assumed.

"It is critical that we understand the movement of genes between these two forms of the African malaria mosquito," Lanzaro said.

He and Lee noted that researchers need to know whether genes for traits like insecticide resistance are shared between the two malaria mosquito subgroups. This information also is important because some of the techniques that appear to be most promising for controlling malaria involve the movement of genes from genetically modified mosquitoes into natural mosquito populations.

The researchers added that the findings also are significant for evolutionary biologists, confirming that the malaria mosquito is a good model for studying between groups, as well as how species evolve.

The new results show that the frequency of hybrid, or crossbred, individuals in a population ranges from 5 percent to 97 percent, compared to the earlier estimates of less than one percent. Although the M and S hybrids generated in the laboratory are normal in every sense, the new study demonstrates that this is not true in nature, where hybrids are common but less fit than other mosquitoes.

The study included data gathered during 21 years from a single village in Mali. The data, representing approximately 250 mosquito generations, revealed that mating behaviors were temporarily unstable. For example, in one year, the rate of crossbreeding between the two groups jumped from the usual zero percent to 12 percent.

Analysis of the distribution of M and S genetic variations at three regions of the genome demonstrated that strong genetic selection prevented transfer of two of the three regions from one group to the other. However, one region of the genome successfully crossed the reproductive barrier from the S subgroup into the M subgroup. This region presumably contained a gene or genes beneficial to the M form mosquitoes.

Explore further: Genetic marker for insecticide resistance in mosquitoes identified

More information: Yoosook Lee, Clare D. Marsden, Laura C. Norris, Travis C. Collier, Bradley J. Main, Abdrahamane Fofana, Anthony J. Cornel, and Gregory C. Lanzaro. "Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae." PNAS 2013 ; published ahead of print November 18, 2013,

Related Stories

New molecular target for malaria control identified

October 29, 2013

A new study led by Harvard School of Public Health (HSPH) and University of Perugia (UNIPG) researchers has shown that egg development in the mosquito species primarily responsible for spreading malaria depends on a switch ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.