Genetically engineered bacteria prevent mosquitoes from transmitting malaria

Researchers at the Johns Hopkins Malaria Research Institute have genetically modified a bacterium commonly found in the mosquito's midgut and found that the parasite that causes malaria in people does not survive in mosquitoes carrying the modified bacterium. The bacterium, Pantoea agglomerans, was modified to secrete proteins toxic to the malaria parasite, but the toxins do not harm the mosquito or humans. According to a study published by PNAS, the modified bacteria were 98 percent effective in reducing the malaria parasite burden in mosquitoes.

"In the past, we worked to genetically modify the mosquito to resist malaria, but of bacteria is a simpler approach," said Marcelo Jacobs-Lorena, PhD, senior author of the study and a professor with Johns Hopkins Bloomberg School of Public Health. "The ultimate goal is to completely prevent the mosquito from spreading the malaria parasite to people."

With the study, Jacobs-Lorena and his colleagues found that the engineered P. agglomerans strains inhibited development of the deadliest human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98 percent within the mosquito. The proportion of carrying (prevalence) decreased by up to 84 percent.

"We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified as a powerful tool to combat malaria," said Jacobs-Lorena.

Malaria kills more than 800,000 people worldwide each year. Many are children.

Explore further

Scientists engineer mosquito immune system to fight malaria

More information: "Fighting malaria with engineered symbiotic bacteria from vector mosquitoes" PNAS, 2012.
Citation: Genetically engineered bacteria prevent mosquitoes from transmitting malaria (2012, July 16) retrieved 19 October 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Jul 17, 2012
Not to be the angel of doom on such good news but it does raise the question about the other 2% that doesn't get caught. The article doesn't raise that issue and therefore leaves one wondering why the researchers don't discuss the failures. What will happen to those parasites that don't get eliminated - do they actually show some kind of resistance to the toxins or is there some failure in delivery of said toxin?
The concern is of course that that seemingly innocent 2% will create an even bigger problem with drug resistance or in this case toxin resistance spreading later on.

Jul 17, 2012
do they actually show some kind of resistance to the toxins

Of course not, Kevin. That would be blasphemous. That would require evolution, which we all know doesn't ever happen.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more