Changing the conversation: Polymers disrupt bacterial communication

November 11, 2013
Changing the conversation: Polymers disrupt bacterial communication

(Phys.org) —Artificial materials based on simple synthetic polymers can disrupt the way in which bacteria communicate with each other, a study led by scientists at The University of Nottingham has shown.

The findings, published in the journal Nature Chemistry, could further our knowledge on how better to control and exploit bacteria in the future and will have implications for work in the emerging field of .

Professor Cameron Alexander, in the University's School of Pharmacy, led the study. He said: "This is an exciting and unexpected finding for us and comes as a result of research which was very much curiosity driven.

"It gives us more information about how to design artificial cells and to produce materials that will interact with microorganisms and control their behaviour, with a whole host of potential applications including drug discovery and energy production."

The study, which also involved scientists from the universities of Birmingham and Newcastle, was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC) and The University of Nottingham.

As part of their research into the development of and programmable bacterial coatings, the team found that polymers—long-chain molecules—that were able to arrange bacteria into clustered communities were, surprisingly, encouraging these bacteria to actively 'talk' to each other. This communication occurred by quorum sensing (QS), a way in which bacteria signal to each other, and coordinate response to environment. Quorum sensing also controls the way in which bacteria release certain types of molecules—for example as a defence mechanism or as tools for infection.

This finding opens up the possibility to influence microbial behaviour by controlling their ability to form productive communities. This can be exploited to prevent the release of toxins during the spread of infection or, alternatively, the production of useful molecules which can act as drugs, food source or biofuels.

The researchers used the bioluminescent marine bacterium Vibrio harveyi, as it allows them to easily track the changes in the bacteria's behaviour by measuring the pattern and intensity of the natural light produced by the organism.

Building on some intriguing initial results, the team of pharmacists, microbiologists chemists and computer scientists were also able to produce computational models predicting and explaining the behaviour of the microbial communities, which were crucial to deduct simple design principles for the programmable interaction of and polymers.

Overall, this research offers new understanding of bacterial community behaviour and will have implications in the design of materials as antimicrobials, for bioprocessing, biocomputation and, more generally, synthetic biology.

Explore further: Life, but not as we know it?

More information: Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes, Nature Chemistry, 2013. www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1793.html

Related Stories

Life, but not as we know it?

May 28, 2008

Researchers at The University of Nottingham have taken some important first steps to creating a synthetic copycat of a living cell, a leading science journal reports.

Fighting bacteria's strength in numbers

May 17, 2012

Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate with each other.

Chemists find new compounds to curb staph infection

May 23, 2013

(Phys.org) —In an age when microbial pathogens are growing increasingly resistant to the conventional antibiotics used to tamp down infection, a team of Wisconsin scientists has synthesized a potent new class of compounds ...

Breaking up the superbugs' party

August 13, 2013

The fight against antibiotic-resistant superbugs has taken a step forward thanks to a new discovery by scientists at The University of Nottingham.

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.