Engineers cut time to 3D-print heterogeneous objects from hours to minutes (w/ Video)

Nov 20, 2013
A computer model of a pair of tweezers shows the distribution of materials and degrees of hardness in the object to be 3D-printed in Dr. Yong Chen's lab at USC Viterbi. Credit: USC Viterbi

Researchers at the USC Viterbi School of Engineering have developed a faster 3D printing process and are now using it to model and fabricate heterogeneous objects, which comprise multiple materials.

Although 3D printing – or direct digital manufacturing – has the potential to revolutionize various industries by providing faster, cheaper and more accurate manufacturing options, fabrication time and the complexity of multi-material objects have long been a hurdle to its widespread use in the marketplace. With this newly developed 3D , however, USC Viterbi professor Yong Chen and his team have shaved the fabrication time down to minutes, bringing the manufacturing world one step closer to achieving its goal.

"Digital material design and fabrication enables controlled material distributions of multiple base materials in a product component for significantly improved design performance. Such fabrication capability opens up exciting new options that were previously impossible," said Yong Chen, Ph.D., professor in the Daniel J. Epstein Department of Industrial and Systems Engineering and the study's lead researcher.

Traditional modeling and prototyping approaches used to take days, but over the past several decades various additive manufacturing (AM) processes have been developed to fabricate both homogeneous and heterogeneous objects more quickly. Currently, AM processes such as multi-jet modeling, which create a solid 3D object from a digital model by laying down successive layers of material, can fabricate a complex object in a matter of hours.

Last year, Chen and another team of USC Viterbi researchers improved an AM-related process called mask-image-projection-based stereolithography (MIP-SL) to drastically speed up the fabrication of homogeneous 3D objects. In the MIP-SL process, a 3D digital model of an object is sliced by a set of horizontal planes and each slice is converted into a two-dimensional mask image. The mask image is then projected onto a photocurable liquid resin surface and light is projected onto the resin to cure it in the shape of the related layer.

This video is not supported by your browser at this time.
Dr. Yong Chen, industrial systems and engineering professor at the USC Viterbi School of Engineering, discusses the 3D printing technique demonstrated in his latest paper. Digital enabled printing allows for several improvements on traditional processes, including reduced speed, increased surface smoothness, and the ability to print with more than one material in varying composition ratios. A fabrication process which used to take hours now takes minutes. Credit: USC Viterbi / Elizabeth Bayne

Furthermore, the USC Viterbi team developed a two-way movement design for bottom-up projection so that the resin could be quickly spread into uniform thin layers. As a result, production time was cut from hours to a few minutes. In their latest paper, the team successfully applies this more efficient process to the fabrication of heterogeneous objects that comprise different materials that cure at different rates. This new 3D printing process will allow heterogeneous prototypes and objects such as dental and robotics models to be fabricated more cost- and time-efficiently than ever before.

In future work, Chen and his team will investigate how to develop an automatic design approach for heterogeneous material distribution according to user-specified physical properties and how to improve the fabrication speed.

Chen and USC Viterbi industrial and systems engineering doctoral candidates students Pu Huang and Dongping Deng are presenting their findings at ASME's 2013 International Mechanical Engineering Congress and Exposition in San Diego on November 20th.

Explore further: The future of 3-D printing

Related Stories

The future of 3-D printing

Oct 16, 2013

Experts in 3D printing at the Engineering and Physical Sciences Research Council (EPSRC) Centre for Innovative Manufacturing in Additive Manufacturing at the University of Nottingham, have helped create a ...

Nanoengineers can print 3D microstructures in mere seconds

Sep 13, 2012

(Phys.org)—Nanoengineers at the University of California, San Diego have developed a novel technology that can fabricate, in mere seconds, microscale three dimensional (3D) structures out of soft, biocompatible ...

Entering a new dimension: 4-D printing

Sep 30, 2013

Imagine an automobile coating that changes its structure to adapt to a humid environment or a salt-covered road, better protecting the car from corrosion. Or consider a soldier's uniform that could alter its camouflage or ...

Recommended for you

Lifting the brakes on fuel efficiency

21 hours ago

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...