Researchers discover nanoparticles can be fabricated using Leidenfrost drops (w/ Video)

Oct 31, 2013 by Bob Yirka report
Plasmonic gold nanoparticles using a levitating drop reactor. Credit: Nature Communications 4, Article number: 2400 doi:10.1038/ncomms3400

(Phys.org) —A team of researchers from several research institutions in Germany has found that certain types of nanoparticles can be created using levitated drops of heated water—Leidenfrost drops. In their paper published in the journal Nature Communications, the team describes how they created metal polymer hybrid foams and other nanoparticles using nothing more than water on a heated substrate.

Most everyone has seen Leidenfrost drops in action, they occur when dumping a small amount of water into an already heated pan—the drops that form slide around as if there is no friction due to the steam that builds up beneath them. In this new effort, the researchers noted that not only does water turn to steam in Leidenfrost drops but it appears that positive gather in that steam leaving negative ions to collect in the liquid above. If melted metal is added to the mix, its positive ions are attracted to the in the liquid where they react and solidify into certain types of .

Using this technique the team found they were able to create nanoporous black gold as well as different types of nanoparticle based foams and also nanoparticle coatings that adhere to a three-dimensional substrate—all without using any . Researchers have been searching for a way to create such materials in new ways that don't result in toxic byproducts. Conventional methods rely on the use of a variety of toxic chemicals to cause the desired reactions to come about. That in turn leads to environmental problems as well as concern about the toxicity of the nanomaterials themselves. The process using Leidenfrost drops, on the other hand, is as clean as it gets, the researchers report, with no need for reducing agents—the reactions occur in the heated without any other mixing either—leading the researchers to describe the technique as "green chemistry." The end result is a much cleaner way to make nanoparticles, which is good news as scientists have been discovering new uses for them in a large variety of products. The researchers believe the nanoparticles they have created thus far might one day be used in medical or electrical components.

This video is not supported by your browser at this time.
Gold nanoparticles synthesis in the Leidenfrost drop reactor: Transformation of Leidenfrost drop from yellow gold salts to plasmonic red colour of gold nanoparticles during the levitation. Credit: Nature Communications 4, Article number: 2400 doi:10.1038/ncomms3400

This video is not supported by your browser at this time.
3D synthesis and coating in the Leidenfrost drop: 3D coating of TEM grid. A rotary motion of Leidenfrost drop holds the TEM grid inside the drop during the coating. Credit: Nature Communications 4, Article number: 2400 doi:10.1038/ncomms3400


Explore further: Separate teams develop similar method for creating non-oxidizing silver nanoparticles

More information: Green chemistry and nanofabrication in a levitated Leidenfrost drop, Nature Communications 4, Article number: 2400 DOI: 10.1038/ncomms3400

Abstract
Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal–polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.

Related Stories

New solarclave uses nanoparticles to create steam

Jul 09, 2013

(Phys.org) —A team of researchers at Rice University has developed a solar powered autoclave based on solar energy and metal and carbon nanoparticles. In their paper published in the journal Proceedings of ...

High speed camera study shows why boiling drops take off

Jul 26, 2012

(Phys.org) -- Everyone knows what happens if you drop water onto a hot pan, it separates into flat bottomed bubbles that appear to float above the bottom of the pan then move around of their own accord until ...

Recommended for you

Light pulses control graphene's electrical behavior

18 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 0