'Molecular Velcro' may lead to cost-effective alternatives to natural antibodies

Oct 30, 2013
'Molecular Velcro' may lead to cost-effective alternatives to natural antibodies
Long organic molecules called peptoids self-assemble into a molecular film on the surface of a water solution. As this film gets folded into a nanosheet, segments of the peptoid get pushed out into loops, which eventually decorate the surface of the nanosheet. Credit: Berkeley Lab

Taking inspiration from the human immune system, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have created a new material that can be programmed to identify an endless variety of molecules. The new material resembles tiny sheets of Velcro, each just one-hundred nanometers across. But instead of securing your sneakers, this molecular Velcro mimics the way natural antibodies recognize viruses and toxins, and could lead to a new class of biosensors.

"Antibodies have a really effective architectural design: a structural scaffold that pretty much stays the same, whether it's for snake venom or the common cold, and endlessly variable functional loops that bind foreign invaders," says Ron Zuckermann, a senior scientist at Berkeley Lab's Molecular Foundry. "We've mimicked that here, with a two-dimensional nanosheet scaffold covered with little functional loops like Velcro."

Zuckermann, Director of the Molecular Foundry's Biological Nanostructures Facility, is corresponding author on a paper reporting these results in ACS Nano, titled "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition." Coauthoring the paper are Gloria K. Olivier, Andrew Cho, Babak Sanii, Michael D. Connolly, and Helen Tran.

Zuckermann's nanosheet scaffolds are self-assembled from peptoids – synthetic, bio-inspired polymers capable of folding into protein-like architectures. Like beads on a string, each peptoid molecule is a long chain of small molecular units arranged in a specific pattern. In earlier work, Zuckermann showed how certain simple peptoids can fold themselves into nanosheets just a few nanometers thick but up to one-hundred micrometers across – dimensions equivalent to a one-millimeter-thick plastic sheet the size of a football field.

"The reason that nanosheets form is because there's a code for it programmed directly into the peptoids," says Zuckermann. "In this case it's admittedly a pretty rudimentary program, but it shows how if you bring in just a little bit of sequence information: Boom! You can make a nanosheet."

Antibody-inspired "molecular Velcro" designed at Berkeley Lab could lead to a new class of biosensors. Researchers took cues from the architecture of a natural antibody (left) in designing a new material that resembles tiny sheets of Velcro (right). Credit: Berkeley Lab

To create functional loops on the nanosheets, the researchers insert short molecular segments into nanosheet-forming peptoid polymers. As the peptoids knit themselves together into sheets, the inserted segments are excluded from the fold, pushed out instead into loops upon the nanosheet surface. The functional loops can be programmed to selectively bind certain enzymes or inorganic materials, which makes the new material promising for chemical sensing and catalysis.

"The advantage here is that we're able to make these materials in very high yield," says Gloria Olivier, a postdoctoral researcher and lead author on the paper. "We're borrowing this idea of stringing together a particular sequence of monomers, which Nature uses to build 3D protein structures, and applying it to the world of non-natural materials, to create a really useful material that can assemble itself."

The researchers demonstrated the flexibility of their method by creating nanosheets with loops of varying composition, length, and density; they made that can pick specific enzymes out of a solution, causing chemical changes that can be detected with standard techniques, and others that bind selectively to gold metal, seeding the growth of gold nanoparticles and films.

"Peptoids can withstand much harsher conditions than peptides, their counterpart in nature," says Olivier. "So if you wanted to build a diagnostic device that can be taken outside of a laboratory, or a device that can screen for biomarkers in the presence of a mixture of proteins like proteases, peptoids are an excellent choice."

Looking beyond the exciting applications, Zuckermann points out that this work represents an important step toward extending the rules of protein folding to the world of synthetic materials.

Says Zuckermann, "That's kind of what my whole research program here is about: learning from the richness of chemical sequence information found in biology to create new types of advanced . We're really just starting to scratch the surface."

Explore further: UO-industry collaboration points to improved nanomaterials

More information: "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition." Gloria K. Olivier, Andrew Cho, Babak Sanii, Michael D. Connolly, Helen Tran, and Ronald N. Zuckermann. ACS Nano, 7, 9276-9386, (2013).

For more about this research, listen to Episode 75 of the ACS Nano podcast, pubs.acs.org/page/ancac3/audio/index.html

Related Stories

Shaken, not stirred: Scientists spy molecular maneuvers

Oct 18, 2011

(PhysOrg.com) -- Stir this clear liquid in a glass vial and nothing happens. Shake this liquid, and free-floating sheets of protein-like structures emerge, ready to detect molecules or catalyze a reaction. ...

Into the (mis)fold: a diagnostic tool for proteins

Jun 01, 2011

(PhysOrg.com) -- Alzheimer’s disease is the most common form of dementia, currently affecting more than 35 million people worldwide. Although many genetic and hereditary factors are thought to contribute ...

Recommended for you

Paper electronics could make health care more accessible

Nov 19, 2014

Flexible electronic sensors based on paper—an inexpensive material—have the potential to some day cut the price of a wide range of medical tools, from helpful robots to diagnostic tests. Scientists have ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.