Researchers propose a new system for quantum simulation

Sep 03, 2013
Researchers propose a new system for quantum simulation
The figure schematically shows a Paul trap with four main electrodes, in which a crystal of Yb+ ions is trapped and overlapped with an optically-trapped cloud of lithium ions. Credit: Ferdinand Schmidt-Kaler

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show that a combined system of ultracold trapped ions and fermionic atoms could be used to emulate solid state physics. This system may outperform possibilities of existing platforms as a number of phenomena found in solid state systems are naturally included, such as the fermionic statistics of the electrons and the electron-sound wave interactions.

Quantum simulation was first proposed by Richard Feynman in 1982. He realized that a calculation of quantum systems is well beyond the ability of any existing computer technology. This is because quantum mechanics features superpositions and entanglement; its dynamics follows many pathways simultaneously. Even the most powerful classical computers lack the computing power to keep track of all those possible outcomes even for small quantum systems. Feynman proposed using an easily accessible and easily controllable laboratory quantum system to mimic the quantum system of interest. This idea is reminiscent to using a crash test dummy to simulate the dynamics of a collision in the classical world.

In their recent paper, the authors calculate that an ion crystal and a degenerate Fermi gas mimic a solid state system built up of atomic cores and electrons, making it a quantum simulator of such a system. The researchers show that a phase transition from a conducting to an insulating state can occur in their solid state look-alike. This unexpected many-body is known as the Peierls transition and relies on lattice phonons and the fermionic statistics of the atoms. The authors expect that the system could be further expanded to study for instance phonon-mediated atom-atom interactions, thus simulating the phonon-mediated electron- responsible for superconductivity.

Explore further: Quantum physics just got less complicated

More information: U. Bissbort et al., Emulating solid-state physics with a hybrid system of ultracold ions and atoms, Physical Review Letters, 20 August 2013 DOI: 10.1103/PhysRevLett.111.080501

Related Stories

New method to generate Laughlin states with atomic systems

Jul 03, 2013

In 1998, the Nobel Prize in Physics was conferred to the discovery of a new type of quantum fluid with fractional charge excitations, known as Laughlin state. The production of this quantum state, which explains the behaviour ...

New component in the quantum electronics toolbox

Aug 29, 2013

The coherence of quantum systems is the foundation upon which hardware for future information technologies is based. Quantum information is carried by units called quantum bits, or qubits. They can be used ...

Recommended for you

Quantum physics just got less complicated

Dec 19, 2014

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent_Grin
5 / 5 (1) Sep 03, 2013
the authors calculate that an ion crystal and a degenerate Fermi gas mimic a solid state system built up of atomic cores and electrons, making it a quantum simulator of such a system.


I think Saturday Morning Breakfast Comics beat them to the discovery:

http://www.smbc-c...54#comic

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.