New potential for touch screens found at your fingertips

Sep 17, 2013
New potential for touch screens found at your fingertips
Subjects were able to detect nano-scale wrinkles while running their fingers on specially-created surfaces.

Our sense of touch is clearly more acute than many realize. A new study by Swedish scientists demystifies the "unknown sense" with first-ever measurements of human tactile perception.

In a ground-breaking study, Swedish scientists have shown that people can detect nano-scale wrinkles while running their fingers upon a seemingly smooth surface. The findings could lead such advances as touch screens for the visually impaired and other products, says one of the researchers from KTH Royal Institute of Technology in Stockholm.

The study marks the first time that scientists have quantified how people feel, in terms of a physical property. One of the authors, Mark Rutland, Professor of Surface Chemistry, says that the human finger can discriminate between surfaces patterned with ridges as small as 13 nanometres in and non-patterned surfaces.

"This means that, if your finger was the size of the Earth, you could feel the difference between houses from cars," Rutland says. "That is one of the most enjoyable aspects of this research. We discovered that a human being can feel a bump corresponding to the size of a very large molecule."

The research team consisted of Rutland and KTH PhD student Lisa Skedung, and psychologist Birgitta Berglund and PhD student Martin Arvidsson from Stockholm Universiy. Their paper, "Feeling Small: Exploring the Tactile Perception Limits," was published on September 12 in Scientific Reports. The research was financed by a grant from Vinnova and the Knowledge Foundation to the SP Technical Research Institute of Sweden. Rutland says that the project will pursue applications of the research together with SP.

The study highlights the importance of surface friction and wrinkle wavelength, or wrinkle width – in the of fine textures.

When a finger is drawn over a surface, vibrations occur in the finger. People feel these vibrations differently on different structures. The friction properties of the surface control how hard we press on the surface as we explore it. A high friction surface requires us to press less to achieve the optimum friction force.

"This is the breakthrough that allows us to design how things feel and are perceived," he says. "It allows, for example, for a certain portion of a on a smartphone to be designed to feel differently by vibration."

The research could inform the development of the in robotics and virtual reality. A plastic touch screen surface could be made to feel like another material, such as fabric or wood, for example. The findings also enable differentiation in product packaging, or in the products themselves. A shampoo, for example, can be designed to change the feel of one's hair.

With the collaboration of National Institute of Standards and Technology (NIST) material science labs, Rutland and his colleagues produced 16 chemically-identical surfaces with wrinkle wavelengths (or wrinkle widths) ranging from 300 nanometres to 90 micrometres, and amplitudes (or wrinkle heights) of between seven nanometres and 4.5 micrometres, as well as two non-patterned surfaces. The participants were presented with random pairs of surfaces and asked to run their dominant index finger across each one in a designated direction, which was perpendicular to the groove, before rating the similarity of the two surfaces.

The smallest pattern that could be distinguished from the non-patterned had grooves with a of 760 nanometres and an amplitude of only 13 nanometres.

Rutland says that by bringing together professors and PhD students from two different disciplines – and psychology – the team succeeded in creating "a truly psycho-physical study."

"The important thing is that touch was previously the unknown sense," Rutland says. "To make the analogy with vision, it is as if we have just revealed how we perceive colour.

"Now we can start using this knowledge for tactile aesthetics in the same way that colours and intensity can be combined for visual aesthetics."

Explore further: Lifting the brakes on fuel efficiency

Related Stories

A touchscreen you can really feel (w/ video)

Nov 16, 2011

(PhysOrg.com) -- Swiss researchers have invented a new generation of tactile surfaces with relief effects – users can feel actual raised keys under their fingers. This technology could have many applications, particularly ...

The artificial finger

Aug 14, 2012

To touch something is to understand it – emotionally and cognitive. It's one of our important six senses, which we use and need in our daily lives. But accidents or illnesses can disrupt us from our sense of touch.

Nissan exploring premium-feel interior concept for cars

Oct 29, 2012

(Phys.org)—Nissan Motor Company has begun work on what it calls a premium-feel interior concept. The aim of the initiative is to create coverings for the interior of a vehicle that the company describes ...

How our sense of touch is a lot like the way we hear

Dec 11, 2012

(Medical Xpress)—When you walk into a darkened room, your first instinct is to feel around for a light switch. You slide your hand along the wall, feeling the transition from the doorframe to the painted ...

Recommended for you

Finnish inventor rethinks design of the axe

2 hours ago

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...