Key cellular mechanism in the body's 'battery' can either spur or stop obesity

September 26, 2013
This illustration shows a surrealism-pop interpretation of the intricate metabolic processes involved in appetite and body weight regulation. Credit: Illustrator Albert Cano

Becoming obese or remaining lean can depend on the dynamics of the mitochondria, the body's energy-producing "battery," according to two new studies by Yale School of Medicine researchers featured as the cover story in the Sept. 26 issue of the journal Cell.

Mitochondria are vital cellular organelles that generate and maintain proper energy levels in complex organisms. Using animal models, the Yale research team studied in different populations of known to be involved in the regulation of appetite. The team found that during the transition from a fasting to an over-fed state, mitochondria in that promote hunger show dynamic changes that are the opposite of those found in neurons that control feelings of fullness.

"We've found that mitochondrion need to have ongoing dynamic plasticity in order to support neurons, which are necessary for appetite and for the maintenance of life," said lead author Tamas Horvath, the Jean and David W. Wallace Professor of Biomedical Research and chair of at Yale School of Medicine. "If these dynamic events—during which the mitochondria fuse to become more effective in generating energy—are disrupted, mitochondria become static, appetite-stimulating neurons become less active, and animals do not develop obesity when exposed to high-fat, high-calorie diets."

Yale co-lead author Marcelo O. Dietrich, M.D., said these same have different consequences in neurons that promote feelings of fullness. These consequences were described in a separate paper in the same issue of Cell, co-authored by Dietrich, Horvath, and a research team in Spain.

The study showed that similar molecular drivers control mitochondria-endoplasmic reticulum interactions and related stress. If the cellular events are disrupted in these mitochondria, animals become morbidly obese.

"The generally accepted view has been that once a cellular biological principle is established in a , that principle would hold for most cells of the body. That is clearly not the case here," said Horvath, who points out some practical consideration from the results.

"For example, the mitochondria have been implicated in the development of chronic diseases such as diabetes, cancer, and neurodegeneration, and targeting mitochondria is an emerging therapeutic approach," he notes. "Our results raise doubt about the rationale of systematically targeting any specific mitochondrial mechanism for the treatment of chronic diseases, because in one cell or tissue, it may result in a very different, potentially undesired outcome than in the other."

Explore further: Mitochondrial cooperatives

More information: Cell 155, 1-12 (September 26, 2013)

Related Stories

Mitochondrial cooperatives

August 13, 2013

Mitochondria, the organelles that supply the cell with energy, are highly dynamic and can link up to form complex tubular networks. A new study shows that this response can transiently compensate for a shortfall in energy ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (6) Sep 26, 2013
While I am not clear on the results stated in the article above, I believe that stress alters the plasticity necessary for the mitochondria to fuse which creates more energy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.