Researchers perform first direct measurement of Van der Waals force

Jul 08, 2013 by Bob Yirka report
Mapping out the van der Waals interaction between two atoms. (a) In the experiment of Béguin et al. two atoms are trapped in the foci of two laser beams separated by a distance R. (b) Depending on R, the excitation laser field can couple the ground state |gg of the atomic pair to states containing one atom in the Rydberg state (|gr and |rg, respectively), or to a state with both atoms populating the Rydberg state |rr. The energy of the latter state is strongly shifted because of the van der Waals interaction UvdW between the atoms (see level diagram in the upper left), resulting in a distance-dependent coherent excitation dynamics of the atomic pair system. (c) By analyzing the time evolution of the atom-pair state, Béguin et al. deduce the van der Waals energy shift as a function of interatomic distance for different Rydberg states. Credit: Physics 6, 71 (2013) DOI: 10.1103/Physics.6.71

(Phys.org) —Researchers working at the French National Center for Scientific Research have for the first time, directly measured the Van der Waals force between two atoms. In their paper published in the journal Physical Review Letters, the team describes how they used lasers to hold two atoms steady and a third laser to measure the Van der Waals force between them.

The weak force between atoms, named after its discoverer Johannes Diderik van der Waals is evident in the behavior of many materials—it's what keeps most together. Scientists have also discovered that it's also what allows a gecko's toes to stick to a smooth wall. But, because the is only apparent when atoms are very close together, scientists have until now been unable to measure it directly.

In this new effort, the research team chose to use Rydberg atoms as part of their study. Such atoms are large and one of their electrons has a highly charged state. This makes them a good candidate for attempting to measure the Van der Waals force—they have more force between them than most other atom pairs and because of that can be measured at longer distances.

They started by firing a pair of lasers at twin Rydberg atoms. Doing so held them steady. Next, they fired a third laser at the two atoms causing them to oscillate at a desired frequency. By measuring the oscillations, the researchers were able to work out mathematically the Van der Waals force between them. More specifically, the researchers measured between ground and excited states, noting that the distance between the two atoms at the time of measurement was key—too close and the excitation of one of the atoms overwhelmed the other—too far and the force between the atoms became too weak to measure. Using the third laser as optic tweezers allowed for adjusting the distance between the two atoms, which ultimately led to just the right distance for measurement.

The team also noted that the technique used for measuring the Van der Waals force also led to the oscillating atoms evolving to a fully coherent state. This means the technique could be used to create quantum logic gates, which might prove useful in creating a quantum computer.

Explore further: What's next for the Large Hadron Collider?

More information: Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms, Phys. Rev. Lett. 110, 263201 (2013) prl.aps.org/abstract/PRL/v110/i26/e263201

Abstract
We report the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe its characteristic C6/R6 dependence. The measured C6 coefficients agree well with ab initio calculations, and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

Related Stories

May the force be with the atomic probe

Dec 21, 2012

New models suggest devising means of probing a surface at a sub-micrometric level as this will help us understand how electrons' diffusion affects long-range attractive forces.

Physicists take new look at the atom

Jan 17, 2011

(PhysOrg.com) -- University of Arizona physicists have discovered a new way to measure how single atoms interact with a surface. Their findings help develop nanotechnology and test new theories about the internal ...

New method to generate Laughlin states with atomic systems

Jul 03, 2013

In 1998, the Nobel Prize in Physics was conferred to the discovery of a new type of quantum fluid with fractional charge excitations, known as Laughlin state. The production of this quantum state, which explains the behaviour ...

Organic Molecules Stay on Top

Nov 19, 2007

The van der Waals force, a weak attractive force, is solely responsible for binding certain organic molecules to metallic surfaces. In a model for organic devices, it is this force alone that binds an organic film to a metallic ...

Recommended for you

What's next for the Large Hadron Collider?

20 hours ago

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Anda
5 / 5 (1) Jul 08, 2013
Good job!
vacuum-mechanics
1 / 5 (6) Jul 08, 2013
The weak force between atoms, named after its discoverer Johannes Diderik van der Waals is evident in the behavior of many materials—it's what keeps most gas molecules together. Scientists have also discovered that it's also what allows a gecko's toes to stick to a smooth wall. But, because the weak force is only apparent when atoms are very close together, scientists have until now been unable to measure it directly.


Refer to Wikipedia - 'Van der Waals forces include attractions and repulsions between atoms, molecules, and surfaces, as well as other intermolecular forces…' It is interesting to note that we still do not understand how and why it is so; knowing the attract mechanism between matters may help…
http://www.vacuum...=7〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.