Novel chemistry for new class of antibiotic

Jul 03, 2013

University of Adelaide research has produced a potential new antibiotic which could help in the battle against bacterial resistance to antibiotics.

The potential new antibiotic targets a critical to .

The compound is a protein inhibitor which binds to the enzyme (called biotin protein ligase), stopping its action and interrupting the life cycle of the bacteria.

"Existing antibiotics target the bacterial cell membranes but this potential new antibiotic operates in a completely different way," says Professor Andrew Abell, project leader and Acting Head of the University's School of Chemistry and Physics.

Professor Abell says the compound, although at a very early stage of development - it has not yet been tested on an animal model - has the potential to become the first of a new class of antibiotics.

"Bacteria quickly build resistance against the known classes of antibiotics and this is causing a significant global health problem," he says.
"Preliminary results show that this new class of compound may be effective against a wide range of , including tuberculosis which has developed a strain resistant to all known antibiotics."

Developing the new protein inhibitor involved a novel approach called 'in situ click chemistry'. A selection of small molecules, or 'precursor fragments', are presented to the bacteria in a way so that the enzyme itself builds the inhibiting compound and also binds with it.

"In a sense the bacteria unwittingly chooses a compound that will stop its growth and assembles it - like building a weapon and using it against itself," says Professor Abell. "We've gone a step further to specifically engineer the enzyme so that it builds the best and most potent weapon."

"Our results are promising. We've made the compounds; we know they bind and inhibit this enzyme and we've shown they stop the growth of a range of bacteria in the laboratory. The next critical step will be investigating their efficacy in an ."

"Thanks to this new approach what might have taken a year or more with a range of sequential experiments, we can now do in one single experiment," Professor Abell says.

The research has been published in the journal Chemical Science and is in collaboration with researchers at Monash University and Adelaide's Women's and Children's Hospital.

Explore further: A closer look at a deadly bacterium sets the stage for new vaccines

More information: pubs.rsc.org/en/content/articlelanding/2013/sc/c3sc51127h

Related Stories

Additive restores antibiotic effectiveness against MRSA

Oct 22, 2012

Researchers from North Carolina State University have increased the potency of a compound that reactivates antibiotics against methicillin-resistant Staphylococcus aureus (MRSA), an antibiotic-resistant form of Staphylococcus that is notor ...

Recommended for you

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

Biomedical sensors for disease detection made simple

May 19, 2015

Healthcare researchers are increasingly focused on the early detection and prevention of illnesses. Early and accurate diagnosis is vital, especially for people in developing countries where infectious diseases ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.