New experiment opens window on glasses

Jun 10, 2013
Metallic glass - shiny, easy to mould and with a high strength-to-weight ratio.

(Phys.org) —For the first time, scientists have mapped the structure of a metallic glass on the atomic scale, bringing them closer to understanding where the liquid ends and the solid begins in glassy materials.

A study led by Monash University researchers and published in Physical Review Letters has used a newly developed technique on one of the world's highest-resolution to understand the structure of a zirconium (Zr)-based . The findings could help explain the mystery of why glasses, or disordered solids form.

At the liquid-glass transition, the melt doesn't become solid at a distinct point, but becomes gradually more viscous until it is rigid. When - such as graphite, salt and diamonds - form they become abruptly rigid as the atoms form a regular, periodic arrangement. Glass never develops into an ordered atomic arrangement,but seems to retain the disordered structure of the liquid, despite its solidity.

This gives glasses unique properties. Metallic glasses have a higher strength-to-weight ratio than aluminium and titanium alloys and are extremely promising structural materials with unique applications as biomaterials and .

Led by Dr Amelia Liu from Monash University's School of Physics and the Monash Centre for , the researchers found that the structure of this Zr-based glass was not random, but composed in large part by efficiently arranged 13-atom icosohedral clusters.

Icosahedra have 20 faces, 12 vertices and 12 axes of five-fold symmetry, which means they cannot be packed into an ordered three dimensional, crystalline structure.

"It has long been theorised that icosahedra were a key atomic motif in the structure of metallic glasses and could, in fact, underlie glass formation. We have provided the first experimental confirmation of this," Dr Liu said.

"Our findings also point the way towards understanding the from liquid to solid – a grand challenge in modern condensed matter physics."

The researchers - from Monash, the University of Melbourne, the Australian Synchrotron, Ames Laboratory and Iowa State University in the US – developed a new electron scattering technique. By analysing the diffraction patterns from nano-scale volumes in the glass, they were able to identify symmetries in individual atomic clusters in the Zr-glass. Previous techniques had not provided sufficient detail to do this.

Dr Liu said that the new technique can now be used to understand the structure of other glasses and help progress the study of disordered materials.

Explore further: Pseudoparticles travel through photoactive material

Related Stories

A new way of making glass

Nov 09, 2012

(Phys.org)—A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are ...

Researchers find ordered atoms in glass materials

Oct 02, 2012

(Phys.org)—Scientists at Ames Laboratory have discovered the underlying order in metallic glasses, which may hold the key to the ability to create new high-tech alloys with specific properties.

Metallic glass: How nanoscale islands react under strain

May 08, 2013

Quick-cooling molten atoms give metal alloys a glassy, or random, atomic structure that generates higher elasticity and better wear- and corrosion-resistance than their crystalline alloy counterparts. However, ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.