Test to improve stem cell safety

Jun 04, 2013

CSIRO scientists have developed a test to identify unsafe stem cells. It is the first safety test specifically for human induced pluripotent stem cells (iPS) – as published today in the international journal Stem Cells.

The breakthrough is a significant step in improving the quality of iPS cells and identifying unwanted cells that can form tumours. The test also determines how stable iPS cells are when grown in the lab. Dr Andrew Laslett and his team have spent the last five years working on the project. The research has focused on comparing different types of iPS cells with . iPS cells are now the most commonly used pluripotent stem cell type for research.

"The test we have developed allows us to easily identify unsafe iPS cells. Ensuring the safety of these cell lines is paramount and we hope this test will become a routine screen as part of developing safe and effective iPS-based cell therapies," says Dr Laslett.

Using their test method, Dr Laslett's team has shown that certain ways of making iPS cells carry more risks. When the standard technique is used, which relies on viruses to permanently change the DNA of a cell, unwanted tumours are more likely to form. In comparison, cells made using methods which do not alter cell DNA, do not form tumours.

Dr Laslett hopes the study and the new will help to raise the awareness and importance of stem cell safety and lead to improvements in quality control globally.

"It is widely accepted that iPS cells made using viruses should not be used for human treatment, but they can also be used in research to understand diseases and identify . Having the assurance of safe and stable cells in all situations should be a priority," says Dr Laslett.

The test uses to identify proteins found on the surface of the cells. Based on the presence or absence of specific proteins the cells are then separated and monitored. Unsafe stem cell lines are easily identified because they form recognisable clusters of cells and the safe ones don't. This test could also be applied to assess the safety of the recently announced somatic cell nuclear transfer human .

Professor Martin Pera, Program Leader of Stem Cells Australia, said: "Although cell transplantation therapies based on iPS cells are being fast-tracked for testing in humans, there is still much debate in the scientific community over the potential hazards of this new technology."

"This important study provides a simple and powerful technique for assessing how safe stem cell lines are for use in patients," he adds.

Explore further: How steroid hormones enable plants to grow

More information: The paper, titled 'Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency' is available on the Stem Cells website.

add to favorites email to friend print save as pdf

Related Stories

Mapping a route to stem cell therapies

May 20, 2013

Monash University researchers are shedding light on the complex processes that underpin the creation and differentiation of stem cells, bringing closer the promise of 'miracle' therapies.

Novel probe for live human iPS cell imaging

May 16, 2013

Researchers from the National Institute of Advanced Industrial Science and Technology (AIST) have developed a highly sensitive lectin probe, rBC2LCN, for human induced pluripotent stem cells (iPS cells). ...

Recommended for you

How steroid hormones enable plants to grow

15 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

16 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

16 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

New discovery: Microbes create dripstones

Aug 18, 2014

According to new research humble, microscopic organisms can create dripstones in caves. This illustrates how biological life can influence the formation of Earth's geology - and the same may be happening ...

User comments : 0