Hidden effects of climate change may threaten eelgrass meadows

Jun 03, 2013

Some research has shown that the effects of changes in the climate may be weak or even non-existent. This makes it easy to conclude that climate change will ultimately have less impact than previous warnings have predicted. But it could also be explained as direct and indirect effects cancelling each other out, as scientists from the University of Gothenburg, Sweden, show in a paper recently published in PNAS, the esteemed scientific journal.

To investigate how different interact, an experiment was conducted at Kristineberg Marine Research Station.

"We raised the in miniature ecosystems containing eelgrass meadows, while simultaneously bubbling with carbon-dioxide. This allowed us to simulate a future climate scenario, characterized by both warmer waters and ocean acidification", explains researcher Christian Alsterberg.

Eelgrass meadows grow in shallow coastal waters and are among the most productive ecosystems in the sea. These meadows are now threatened, not only by climate change but also by and eutrophication.

"By studying eelgrass meadows on a ecosystem level, we were able to observe how interact under changing climatic conditions. This also allowed us to measure the indirect effects, meaning the on an animal or a plant mediated through another organism."

For example, the metabolism of many crustaceans that live in eelgrass meadows increases when the water temperature rises. This in turn means they need to eat more algae and may consequently graze it more efficiently. At the same time, the growth of benthic on the sediment surface in the eelgrass meadows will be more vigorous.

Using statistical methods that separates direct and indirect effects, the researchers were able to discern how higher water temperature combined with ocean acidification affects not just individual species but also interactions between species in the ecosystem.

The researchers found that the effects are largely determined by the presence or absence of different fauna, primarily small algae-eating crustaceans. The net effect of changes in temperature and on benthic microalgae is non-existent if there are crustaceans in the ecosystem. But in the absence of crustaceans, the amount of benthic algae is largely controlled by positive and negative direct and indirect effects of higher temperatures and acidification.

The results showed that, without small algae-eating crustaceans in the eelgrass meadows, climate change could pose a much greater threat to their survival.

"The experiment also taught us the importance of investigating climate change using several different approaches, in order to fully understand its effects and to predict future impacts", says Christian Alsterberg.

Explore further: Dam hard: Water storage is a historic headache for Australia

More information: Alsterberg, C. et al. Consumers mediate the effects of experimental ocean acidification and warming on primary producers, PNAS. www.pnas.org/content/110/21/8603.full.pdf+html

add to favorites email to friend print save as pdf

Related Stories

Seagrass on the decline

May 15, 2013

(Phys.org) —Seagrass along Moreton Bay will drastically decline as sea levels rise, a University of Queensland study has found. The study, published in international journal Global Change Biology this week, reveals that u ...

Lakes react differently to warmer climate, study finds

Oct 04, 2012

A future warmer climate will produce different effects in different lakes. Researchers from Lund University in Sweden have now been able to explain that the effects of climate change depend on what organisms are dominant ...

Recommended for you

Selling and buying water rights

1 hour ago

Trying to sell or buy water rights can be a complicated exercise. First, it takes time and effort for buyers and sellers to find each other, a process that often relies on word-of-mouth, local bulletin boards, ...

Researchers track ammonium source in open ocean

18 hours ago

To understand the extent to which human activities are polluting Earth's atmosphere and oceans, it's important to distinguish human-made pollutants from compounds that occur naturally. A recent study co-authored ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.