Researchers tackle collapsing bridges with new technology

May 1, 2013
The Akashi-Kaikyo Bridge in Japan, the world's longest suspension span. Credit: Wikipedia

In this month's issue of Physics World, an international group of researchers propose a new technology that could divert vibrations away from load-bearing elements of bridges to avoid catastrophic collapses.

Michele Brun, Alexander Movchan, Ian Jones and Ross McPhedran describe a "wave bypass" technique that has many similarities to those being used by researchers looking to create Harry Potter-style invisibility cloaks, which exploit man-made materials known as to bend light around objects.

Led by Movchan, who is at the University of Liverpool, the researchers propose making "lightweight changes" to existing bridges by bolting on special lightweight structures at period intervals to the underside of the main "deck" of the bridge. These structures would consist of concentrated cubic blocks, or resonators, linked to each other, and the bridge, by a series of bars.

The resonators, appearing under the bridge like a set of hanging baskets, could be fine-tuned to the specific vibrations that make a bridge susceptible to collapsing, meaning the vibrations get redirected into the resonators and make the bridge safer.

The Tacoma Narrows Bridge is perhaps the most famous example of a bridge that collapsed in response to external forces. In 1940 strong rhythmic cross-winds resonated with the bridge's natural frequency, causing it to bend and twist until it collapsed.

Although 21st-century structures are much more robust, the researchers' proposals have been inspired by events on the Volga Bridge two years ago.

The 7.1 km bridge, which crosses the river Volga in Russia, was forced to shut in May 2011 – less than a year after opening – when a long- caused sections of the bridge to bend. A similar problem struck the Millennium in London when it first opened in 2000.

"Even though the Volga and Millennium bridges were designed using industry-standard packages, the fact that problems arose shows that it is all too easy with large and complicated structures to overlook vibrations that may cause structural problems under practical conditions," the researchers write.

The concept of a wave bypass is also found widely in nature, specifically in certain moths and butterflies, which have remarkable nanostructures that create diffracting mirrors. The mirrors funnel light of a desired colour into a vivid optical display on the organism's body.

"It is, to us, remarkable that the principles lying behind structured mirrors, waveguides and bypass structures can be used not just by the humble sea mouse for its iridescence but also by engineers in the quest for more resilient and robust bridges," the researchers write.

Explore further: Picking up bad vibes to gauge bridge health

Related Stories

Picking up bad vibes to gauge bridge health

May 2, 2007

By monitoring changes in vibrations of bridges it is possible to identify hidden cracks and fractures, according to a Queensland University of Technology researcher.

Balsa bridges, with a twist

October 19, 2012

(Phys.org)—How much weight can a bridge made of balsa wood carry? When encased in a layer of fiber-reinforced resin, much more than you would expect, say engineers from EPFL. On October 12th, a composite bridge deck with ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.