Researchers tackle collapsing bridges with new technology

May 01, 2013
The Akashi-Kaikyo Bridge in Japan, the world's longest suspension span. Credit: Wikipedia

In this month's issue of Physics World, an international group of researchers propose a new technology that could divert vibrations away from load-bearing elements of bridges to avoid catastrophic collapses.

Michele Brun, Alexander Movchan, Ian Jones and Ross McPhedran describe a "wave bypass" technique that has many similarities to those being used by researchers looking to create Harry Potter-style invisibility cloaks, which exploit man-made materials known as to bend light around objects.

Led by Movchan, who is at the University of Liverpool, the researchers propose making "lightweight changes" to existing bridges by bolting on special lightweight structures at period intervals to the underside of the main "deck" of the bridge. These structures would consist of concentrated cubic blocks, or resonators, linked to each other, and the bridge, by a series of bars.

The resonators, appearing under the bridge like a set of hanging baskets, could be fine-tuned to the specific vibrations that make a bridge susceptible to collapsing, meaning the vibrations get redirected into the resonators and make the bridge safer.

The Tacoma Narrows Bridge is perhaps the most famous example of a bridge that collapsed in response to external forces. In 1940 strong rhythmic cross-winds resonated with the bridge's natural frequency, causing it to bend and twist until it collapsed.

Although 21st-century structures are much more robust, the researchers' proposals have been inspired by events on the Volga Bridge two years ago.

The 7.1 km bridge, which crosses the river Volga in Russia, was forced to shut in May 2011 – less than a year after opening – when a long- caused sections of the bridge to bend. A similar problem struck the Millennium in London when it first opened in 2000.

"Even though the Volga and Millennium bridges were designed using industry-standard packages, the fact that problems arose shows that it is all too easy with large and complicated structures to overlook vibrations that may cause structural problems under practical conditions," the researchers write.

The concept of a wave bypass is also found widely in nature, specifically in certain moths and butterflies, which have remarkable nanostructures that create diffracting mirrors. The mirrors funnel light of a desired colour into a vivid optical display on the organism's body.

"It is, to us, remarkable that the principles lying behind structured mirrors, waveguides and bypass structures can be used not just by the humble sea mouse for its iridescence but also by engineers in the quest for more resilient and robust bridges," the researchers write.

Explore further: Hide and seek: Sterile neutrinos remain elusive

add to favorites email to friend print save as pdf

Related Stories

Picking up bad vibes to gauge bridge health

May 02, 2007

By monitoring changes in vibrations of bridges it is possible to identify hidden cracks and fractures, according to a Queensland University of Technology researcher.

Balsa bridges, with a twist

Oct 19, 2012

(Phys.org)—How much weight can a bridge made of balsa wood carry? When encased in a layer of fiber-reinforced resin, much more than you would expect, say engineers from EPFL. On October 12th, a composite ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

3 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

7 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

11 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0