Nanocrystals grow from liquid interface

May 17, 2013 by Tona Kunz
Nanocrystals grow from liquid interface
Illustration of the nano-layer at the liquid interface between the salt solution and mercury. Physicists from Kiel University discovered the formation of an ordered crystal of exactly five atomic layers between the two liquids with brilliant X-rays. Credit: Christian-Albrechts-Universität zu Kiel

An international collaboration of scientists has discovered a unique crystalizing behavior at the interface between two immiscible liquids that could aid in sustainable energy development.

Liquid interface behavior cannot be investigated at atomic level by most modern methods. Only brilliant X-rays at world-leading light sources can investigate this type of important chemical processes.

The result is reported on in the April issue of the journal Proceedings of the National Academy of Science in an article titled "In situ x-ray studies of adlayer-induced crystal nucleation at the liquid-liquid interface."

The team used high-energy, high-brilliance X-rays at the LSS (liquid surface spectrometer) at the 9-ID-C beamline of the Advanced Photon Source (APS) at Argonne National Laboratory and the LISA diffractometer (Liquid Interfaces Scattering Apparatus) at the PETRA III light source at the German laboratory DESY. The research is the continuation and expansion of research done at the APS in 2010.

In their latest work, the researchers from the U.S., Israel and Germany wanted to find out, for the first time, what exactly occurs during chemical growth at liquid interfaces. Led by researchers from the Institute of Experimental and Applied Physics of Kiel University, the team observed the formation of an ordered crystal of exactly five between the two liquids, which acts as a foundation for growing even bigger crystals. This work may result in new semiconductor and nano-particle production processes.

They investigated mercury surface in contact with a salt solution containing lead and bromine (or fluorine) ions and obtained an astonishing result: although both liquids were atomically disordered in the bulk, a nanometre thin layer, that is a ten thousandth of the width of a human hair, with crystalline order was formed at their interface.

The atomic order that develops at the interface of otherwise disordered liquids is not only of fundamental interest for science. In fact, in the last few years, a range of chemical processes for producing materials and nano-particles has employed growth at liquid interfaces. For example, two years ago, American scientists at the University of Michigan developed a similar process for manufacturing semiconductor germanium with an extremely energy-efficient method from its oxide.

Further developments of such processes could help to reduce the high energy costs in the production of solar cells. In order to make such advances, a better understanding of these processes on the atomic scale is required. This work is an important step in this direction.

Explore further: Can perovskites and silicon team up to boost industrial solar cell efficiencies?

More information: www.pnas.org/cgi/doi/10.1073/pnas.1301800110

add to favorites email to friend print save as pdf

Related Stories

Exploring middle ground of solids and liquids

Nov 16, 2012

(Phys.org)—In experiments at SLAC National Accelerator Laboratory's Linac Coherent Light Source X-ray laser, researchers made snapshots of atomic-scale fluctuations in liquids and glasses. The results are ...

Surface structure controls liquid spreading

Apr 24, 2013

Researchers at Aalto University have developed a purely geometric surface structure that is able to stop and control the spreading of liquids on different types of surfaces. The structure has an undercut ...

Materials scientists watch electrons 'melt'

Nov 22, 2011

(PhysOrg.com) -- When a skier rushes down a ski slope or a skater glides across an ice rink, a very thin melted layer of liquid water forms on the surface of the ice crystals, which allows for a smooth glide ...

How to overcome the oxide barrier

May 13, 2013

(Phys.org) —Researchers at Pacific Northwest National Laboratory have uncovered the characteristics of a low-resistance electrical contact to strontium titanate, SrTiO3, an important prototypical oxide semi ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.