Researcher construct invisibility cloak for thermal flow

May 08, 2013
Researcher construct invisibility cloak for thermal flow
Thermal invisibility cloak: Heat is passed around the central area from the left to the right. Temperature characteristics (white lines) remain parallel. Credit: R. Schittny/KIT

By means of special metamaterials, light and sound can be passed around objects. KIT researchers now succeeded in demonstrating that the same materials can also be used to specifically influence the propagation of heat. A structured plate of copper and silicon conducts heat around a central area without the edge being affected. The results are presented in the Physical Review Letters journal.

"For the thermal , both materials have to be arranged smartly," explains Robert Schittny from KIT, the first author of the study. Copper is a good , while the silicon material used, called PDMS, is a bad conductor. "By providing a thin copper plate with annular silicon structures, we produce a material that conducts heat in various directions at variable speeds. In this way, the time needed for passing around a hidden object can be compensated."

If a simple, solid metal plate is heated at the left edge, heat migrates uniformly to the right side. The temperature of the plate decreases from the left to the right. Exactly the same behavior is exhibited by the new metamaterial consisting of copper and silicon outside of the annular structure. No heat penetrates inside. Outside, there is no indication of what happens inside.

"These results impressingly reveal that transformation optics methods can be transferred to the highly different area of ," says Martin Wegener, Head of the Institute of Applied Physics of KIT. Here, the first three-dimensional invisibility cloak for was developed. While optics and are based on the propagation of waves, heat is a measure of the unordered movement of . Still, basic mathematical descriptions can be used to calculate the structures having the effect of an invisibility cloak. With the methods of so-called transformation optics, a distortion of the describing coordinate system is calculated. Arithmetically speaking, an extended object disappears in an infinitely small point. This virtual distortion can be mapped to a real metamaterial structure that passes incident light around the object to be hidden, as if it was not even existing.

"I hope that our work will be the basis of many further developments in the field of thermodynamic metamaterials," Wegener says. Thermal invisibility cloaks are a rather new field in fundamental research. In the long term, they might be applied in areas needing effective heat management, such as in microchips, electric components, or machines.

Explore further: It's particle-hunting season! NYU scientists launch Higgs Hunters Project

More information: Experiments on Transformation Thermodynamics: Molding the Flow of Heat, R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, PRL, 2013.

Related Stories

Karlsruhe invisibility cloak: Disappearing visibly

May 18, 2011

"Seeing something invisible with your own eyes is an exciting experience," say Joachim Fischer and Tolga Ergin. For about one year, both physicists and members of the team of Professor Martin Wegener at KIT's ...

One size cloaks all

Nov 21, 2012

A metamaterial invisibility cloak that can adapt to hide different sized objects is demonstrated by in Nature Communications this week. The findings represent a useful advance for more practical applications of metamaterial cloaki ...

New invisibility cloak hides objects from human view

Jul 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

Invisibility cloak research moves forward at MTU

Mar 25, 2013

(Phys.org) —Michigan Technological University's invisibility cloak researchers have done it again. They've moved the bar on one of the holy grails of physics: making objects invisible. Just last month, ...

Recommended for you

Particles, waves and ants

5 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.