Studies generate comprehensive list of genes required by innate system to defend sex cells

May 09, 2013

Two teams of investigators led by Professor Gregory Hannon of Cold Spring Harbor Laboratory (CSHL) today publish studies revealing many previously unknown components of an innate system that defends sex cells – the carriers of inheritance across generations – from the ravages of transposable genetic elements.

When activated, these troublesome segments of DNA, also called jumping or transposons, can copy and insert themselves at random spots across the chromosomes. In sperm and the proliferation of transposons can be particularly devastating, causing severe developmental impairments in offspring as well as . Over the of evolution, complex organisms have developed means of defending their germline genomes against transposons, principally via a series of mechanisms that scientists call the piRNA pathway.

In animals, this pathway involves a family of proteins – called Piwi proteins – that combine with a variety of small called Piwi-interacting RNAs, or piRNAs. Since the discovery of piRNAs in 2006, scientists have been trying to understand how they are created, and how they do the essential job of repressing transposons – which are plentiful although usually inactive throughout the genomes of nearly every species.

Some important players in the piRNA pathway are known, but the majority have remained mysterious. "That's why the two new studies from our lab are important," says Hannon, who is also an Investigator of the Howard Hughes Medical Institute. "We've identified dozens of genes essential for proper function of the piRNA pathway, and have looked at some of them in detail." The work advances knowledge of how the pathway works, and provides others studying it a basis for fleshing out the mechanism in its entirety.

"It's a major step toward our goal of obtaining the blueprints for reconstructing a fully operational piRNA transposon-silencing machinery in the lab," according to Felix Muerdter, a Ph.D. candidate, who joined three other scientists in the Hannon lab—Drs. Benjamin Czech, Jonathan Preall, and Paloma Guzzardo – in conducting the experiments and co-authoring the new papers.

To be able to assemble the machinery active in repressing transposons will be to understand in unprecedented detail how our cells, more broadly, selectively detect and silence genes. This knowledge promises to play a role in finding new ways to treat complex diseases involving gene dysfunction, ranging from cancer to schizophrenia.

The two Hannon teams performed their experiments in fruit flies, which possess all of the fundamental elements of germline defense that humans do, owing to the phenomenon that biologists call sequence conservation. It is nature's way of preserving life's most essential mechanisms across species.

Two teams, different cell types

The two Hannon lab teams used the same meticulous means of uncovering new piRNA pathway components, albeit in different kinds of cells. Czech, Preall and their group worked with female germ cells; Muerdter and Guzzardo focused on follicle cells, which are found inside the female egg chamber but are derived from somatic cells – the cell type that comprises all of an organism's non-.

Both groups performed interference (RNAi) screens against large numbers of genes in the cell types they studied. These screens use small RNAs to "knock down" the activity of specific genes. Czech and Preall's group knocked down all 8000 genes expressed in the fly ovary, one at a time. Muerdter and Guzzardo knocked down all 13,900 genes in the fly in similar fashion. The purpose of these experiments was to see what happened to transposon levels when single genes were no longer functional.

In both groups, the screens led to the identification of dozens of genes whose absence was shown to impair transposon repression. Both groups later selected one or two genes in their screens whose knock-down had the most potent impact on transposon proliferation. For Muerdter and Guzzardo, repression of a gene they named asterix caused levels of a transposon called gypsy to soar. But how?

How gypsy is repressed

When gypsy DNA is expressed, it begins to generate an RNA "message," a preliminary step in the transposon proliferation process. When the asterix gene was knocked down, this is precisely what happened. "Normally, the Piwi protein, forming a complex with a small RNA, can recognize a sequence on this RNA message," Guzzardo explains. "When the piRNA finds the sequence, it attaches and the process of transcription stops."

The new work makes clear why: attachment of the piRNA to the gypsy message causes histones – proteins that pack gypsy DNA – to take on chemical modifications (called H3K9 trimethylation marks) that tag it as "silent." The DNA cannot be accessed by the gene-expression machinery; gypsy is thus kept in a dormant state.

Without asterix, the tag that renders gypsy silent is absent, and the gypsy gene thus becomes accessible to the machinery in the nucleus that starts to transcribe it. The transposon can now proliferate.

Czech and Preall, doing similar work exclusively in the ovary, found some of the same genes to be active in repressing transposons in those cells, thus making clear that they are components of what can now be called a "core piRNA pathway." In the fly ovary, many more transposons – 80 to 100 – can potentially be activated than in follicle and other somatic cells, in which the corresponding number is around 20 to 30. For this reason, piRNA mechanisms in the female germline cells are more elaborate, and involve more genes and probably more accessory proteins in the transposon repression process, according to Czech.

"Our screens have identified a set of genes involved in transposon suppression in the female ovary of the fly," Czech says. "We're excited to have generated what appears to be a comprehensive list of core components of the piRNA pathway, and hope that this spurs further discovery in other labs. Our next job is to distinguish members of the pathway involved in generating piRNAs from those we call 'effectors,' and ultimately bring to light the molecular mechanisms underlying piRNA biogenesis and effector functions."

Explore further: Researchers successfully clone adult human stem cells

More information: The following papers appear online ahead of print May 9, 2013 in Molecular Cell: "A Transcriptome-wide RNAi Screen in the Drosophila Ovary Reveals Factors of the Germline piRNA Pathway" (authors: Benjamin Czech, Jonathan B. Preall, Jon McGinn and Gregory J. Hannon); and "A Genome-wide RNAi Screen Draws a Genetic Framework for Transposon Control and Primary piRNA Biogenesis in Drosophila" (authors: Felix Muerdter, Paloma M. Guzzardo, Jesse Gillis, Yicheng Luo, Yang Yu, Caifu Chen, Richard Fekete and Gregory J. Hannon).

Related Stories

Gene invaders are stymied by a cell's genome defense

Feb 14, 2013

Gene wars rage inside our cells, with invading DNA regularly threatening to subvert our human blueprint. Now, building on Nobel-Prize-winning findings, UC San Francisco researchers have discovered a molecular machine that ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.