Nanowires grown on graphene have surprising structure

Apr 23, 2013 by Liz Ahlberg
Schematic representation of phase segregated InGaAs/InAs nanowires grown on graphene and single phase InGaAs nanowires grown on a different substrate. Credit: Parsian Mohseni

(Phys.org) —When a team of University of Illinois engineers set out to grow nanowires of a compound semiconductor on top of a sheet of graphene, they did not expect to discover a new paradigm of epitaxy.

The self-assembled wires have a core of one composition and an outer layer of another, a desired trait for many advanced . Led by professor Xiuling Li, in collaboration with professors Eric Pop and Joseph Lyding, all professors of electrical and computer engineering, the team published its findings in the journal Nano Letters.

Nanowires, tiny strings of , have great potential for applications in transistors, , lasers, sensors and more.

"Nanowires are really the major building blocks of future nano-devices," said postdoctoral researcher Parsian Mohseni, first author of the study. "Nanowires are components that can be used, based on what material you grow them out of, for any functional electronics application."

Li's group uses a method called epitaxy to grow nanowires from the bottom up on a flat substrate of semiconductor materials, such as silicon. The nanowires are made of a class of materials called III-V (three-five), compound semiconductors that hold particular promise for applications involving light, such as solar cells or lasers.

Nanowires grown on graphene have surprising structure
A false-color microscope image of a single nanowire, showing the InAs core and InGaAs shell. Credit: Parsian Mohseni

The group previously reported growing III-V nanowires on silicon. While silicon is the most widely used material in devices, it has a number of shortcomings. Now, the group has grown nanowires of the material indium (InGaAs) on a sheet of graphene, a 1-atom-thick sheet of carbon with exceptional physical and conductive properties.

Thanks to its thinness, graphene is flexible, while silicon is rigid and brittle. It also conducts like a metal, allowing for direct to the nanowires. Furthermore, it is inexpensive, flaked off from a block of graphite or grown from .

"One of the reasons we want to grow on graphene is to stay away from thick and expensive substrates," Mohseni said. "About 80 percent of the manufacturing cost of a conventional solar cell comes from the substrate itself. We've done away with that by just using graphene. Not only are there inherent cost benefits, we're also introducing functionality that a typical substrate doesn't have."

The researchers pump gases containing gallium, indium and arsenic into a chamber with a graphene sheet. The nanowires self-assemble, growing by themselves into a dense carpet of vertical wires across the surface of the graphene. Other groups have grown nanowires on graphene with compound semiconductors that only have two elements, but by using three elements, the Illinois group made a unique finding: The InGaAs wires grown on graphene spontaneously segregate into an indium arsenide (InAs) core with an InGaAs shell around the outside of the wire.

"This is unexpected," Li said. "A lot of devices require a core-shell architecture. Normally you grow the core in one growth condition and change conditions to grow the shell on the outside. This is spontaneous, done in one step. The other good thing is that since it's a spontaneous segregation, it produces a perfect interface."

So what causes this spontaneous core-shell structure? By coincidence, the distance between atoms in a crystal of InAs is nearly the same as the distance between whole numbers of carbon atoms in a sheet of graphene. So, when the gases are piped into the chamber and the material begins to crystallize, InAs settles into place on the graphene, a near-perfect fit, while the gallium compound settles on the outside of the wires. This was unexpected, because normally, with van der Waals epitaxy, the respective crystal structures of the material and the substrate are not supposed to matter.

"We didn't expect it, but once we saw it, it made sense," Mohseni said.

In addition, by tuning the ratio of gallium to indium in the semiconductor cocktail, the researchers can tune the optical and conductive properties of the nanowires.

Next, Li's group plans to make solar cells and other optoelectronic devices with their graphene-grown nanowires. Thanks to both the wires' ternary composition and 's flexibility and conductivity, Li hopes to integrate the wires in a broad spectrum of applications.

"We basically discovered a new phenomenon that confirms that registry does count in van der Waals epitaxy," Li said.

Explore further: A nanosized hydrogen generator

More information: The paper, "InxGa1–xAs Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation," is available online.

Related Stories

Researchers grow semiconductors on graphene

Sep 10, 2012

Researchers at the Norwegian University of Science and Technology (NTNU) have patented and are commercializing GaAs nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors ...

Towards replacing silicon with graphene

Sep 28, 2012

Norwegian researchers are the world's first to develop a method for producing semiconductors from graphene. This finding may revolutionize the technology industry.

Nanowires get into the groove

Aug 22, 2011

Weizmann Institute scientists have discovered that growing nanowires out, not up, can keep them in line.

Recommended for you

Engineers show light can play seesaw at the nanoscale

5 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

FastEddy
1 / 5 (6) Apr 24, 2013
Updates to existing technologies. ( http://phys.org/n...tml#nRlv ) ... Keep 'em coming!