Scientists uncover the nuclear life of actin

Mar 24, 2013

A key building block of life, actin is one of the most abundant and highly conserved proteins in eukaryotic cells.

First discovered in more than 70 years ago, actin has a well-established identity as a cytoplasmic protein that works by linking itself in chains to form . formed by these actin polymers are crucial to .

So it came as a surprise when scientists discovered actin in the nucleus. Labs have been working for the past few decades to figure out exactly what it's doing there.

A new study published this week in Nature Structural & Molecular Biology reveals that actin has a new and fundamental nuclear function, and that surprisingly, it accomplishes this task in its single-molecule (monomeric) form – not through polymerization.

Senior author of the study Xuetong "Snow" Shen, Ph.D., associate professor in The University of Texas MD Anderson Cancer Center Department of Molecular Carcinogenesis, has been fascinated by the mystery of nuclear actin. In collaboration with researchers from Colorado State University, his lab developed a unique model system to nail down actin's function in the nucleus by studying the actin-containing INO80 chromatin remodeling complex.

In 2000, as a postdoc at NIH in Carl Wu's lab, Shen identified actin as a component of the INO80 complex, adding to the growing list of evidence that actin indeed has a life in the nucleus. However, how actin actually works in the nucleus remains fuzzy due to lack of clear experimental systems.

"Our model system opened up a new opportunity to look in depth at the function of nuclear actin as it relates to gene regulation, genome stability, and ultimately cancer," Snow said.

A nuclear role for monomeric actin

Because yeast have only a single actin gene, the authors reasoned that studying INO80 in yeast cells would allow a direct assessment of the 's nuclear function. In contrast, mammals have at least six forms of actin coded by separate genes, making their study more difficult.

The researchers used both genetic and biochemical methods to dissect actin's role in the INO80 complex. The INO80 complex normally functions in the to rearrange chromatin ¬– the intertwined proteins and DNA that are packaged into chromosomes – regulating the expression of many different genes.

The authors found that a mutant form of actin impairs the ability of INO80 to function correctly, implicating actin in the process of chromatin remodeling – an exploding field of research with applications in cancer diagnosis and treatment.

In the cytoplasm, actin functions primarily as a . Cytoplasmic actin is a component of the cytoskeleton and the muscle contractile machinery, and is essential for cell mobility, including cancer metastasis. Actin inside the INO80 complex is arranged in a clever way such that it cannot polymerize; instead, actin's monomeric form appears to interact with chromatin.

"Our study challenges the dogma that actin functions through polymerization, revealing a novel and likely a fundamental mechanism for monomeric nuclear actin," Shen said.

New findings for an ancient complex

Because actin and several of the other INO80 components are so highly conserved, even in human cells, this mechanism likely represents an ancient, fundamental role of actin, which has been preserved through evolution.

Shen's group is now teasing out the exact mechanism by which nuclear actin interacts with chromatin. They also hope to extend the results to human cells and to identify potential ways by which nuclear actin could be involved in cancer.

Chromatin is critical for maintaining the delicate balance between gene activation and repression, Shen said. "Disrupting this regulation can lead to cancer, and it remains to be seen whether nuclear has a role in this process."

Explore further: Report on viruses looks beyond disease

Related Stories

How actin networks are actin'

Jan 02, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Key finding in rare muscle disease

Jan 17, 2007

The finding is in the current issue of Annals of Neurology, a leading international neurology journal, in work led by Professor Nigel Laing and Dr Kristen Nowak of the Laboratory for Molecular Genetics at the Western Austra ...

A budding role for a cellular dynamo

Feb 18, 2009

Actin, a globular protein found in all eukaryotic cells, is a workhorse that varies remarkably little from baker's yeast to the human body. Part of the cytoskeleton, actin assembles into networks of filaments that give the ...

Atomic model of tropomyosin bound to actin

Feb 15, 2011

New research sheds light on the interaction between the semi-flexible protein tropomyosin and actin thin filaments. The study, published by Cell Press on February 15th in the Biophysical Journal, provides the first detail ...

Recommended for you

Report on viruses looks beyond disease

2 hours ago

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

A molecule's transformation filmed at high resolution

Jul 21, 2014

François Légaré's team at the INRS Énergie Matériaux Télécommunications Research Centre successfully imaged a chemical reaction with a spatial and temporal resolution greatly exceeding that obtained to date using microscopes. ...

User comments : 0