New technology in the magnetic cooling of chips

Feb 20, 2013

Researchers from CICnanoGUNE and the University of Cambridge have developed a new technology in the magnetic cooling of chips based on the straining of materials. Compared with the current technologies, this advance enables the impact on the environment to be lessened. The work has been published recently in the prestigious journal Nature Materials.

Current , be they refrigerators, freezers or , make use of the compression and expansion of a gas. When the gas is compressed, it changes into a and when it expands it evaporates once again. To evaporate, it needs heat, which it extracts from the medium it touches and that way cools it down. However, this system is harmful for the environment and, what is more, the compressors used are not particularly effective.

One of the main alternatives that is currently being explored is cooling. It consists of using a instead of a gas, and magnetizing and demagnetizing cycles instead of compression-expansion cycles. Magnetic cooling is a technique based on the magnetocaloric effect, in other words, it is based on the properties displayed by certain materials to modify their temperature when a magnetic field is applied to them. However, the applying of a magnetic field leads to many problems in current miniaturized technological devices (, computer memories, etc.), since the magnetic field can interact negatively owing to its effect on nearby units. In this respect, the quest for new ways of controlling the magnetization is crucial.

Magnetism without magnetic fields

The researchers Luis Hueso, Andreas Berger and Odrej Hovorka of nanoGUNE have discovered that by using the straining of materials, they can get around the problems of applying a magnetic field. "By straining the material and then relaxing it an effect similar to that of a is created, thus inducing the magnetocaloric effect responsible for cooling," explains Luis Hueso, leader of the nanodevices group at nanoGUNE and researcher in this study.

"This new technology enables us to have a more local and more controlled cooling method, without interfering with the other units in the device, and in line with the trend in the miniaturization of technological devices," adds Hueso.
20-nanometre films consisting of lanthanum, calcium, manganese and oxygen (La0.7Ca0.3MnO3) have been developed. According to Hueso, "the aim of this field of research is to find materials that are efficient, economical and environmentally friendly."

"The idea came about at Cambridge University and among various groups in the United Kingdom, France, Ukraine and the Basque Country we have come up with the right material and an effective technique for cooling electronic chips, computer memories and all these types of applications in microelectronics. Technologically, there would not be any obstacle to using them in fridges, freezers, etc. but economically it is not worthwhile because of the size," stresses Hueso.

Today, most of the money spent on the huge dataservers goes on cooling. That is why this new technology could be effective in applications of this kind. Likewise, one of the great limitations that computer processors have today is that they cannot operate as fast as one would like because they can easily overheat. "If we could cool them down properly, they would be more effective and could work faster," adds Hueso.

Dr Hueso stresses that this is a very interesting subject with respect to future patents.

Explore further: Physicist demonstrates dictionary definition was dodgy

More information: X.Moya, L., et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Materials. DOI: 10.1038/NMAT3463.

add to favorites email to friend print save as pdf

Related Stories

Milestone in magnetic cooling

Aug 24, 2007

The first milestone in magnetic cooling has been achieved. Between 5 and 10 degrees of cooling – this was the success criteria for the first milestone in a project involving magnetic cooling at Risø National Laboratory ...

Magnetic memories manipulated by voltage, not heat

Aug 29, 2011

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is ...

Recommended for you

Steering chemical reactions with laser pulses

2 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

Grasp of SQUIDs dynamics facilitates eavesdropping

Apr 22, 2014

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure ...

UK's lead in physics healthy but insecure

Apr 22, 2014

The quantity and quality of scientific papers produced by UK physicists indicates that the UK remains in an elite group of nations contributing at the leading edge of physics research.

User comments : 0

More news stories

Precise control of optical frequency on a chip

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

Steering chemical reactions with laser pulses

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...