Engineer designs self-powered nanoscale devices that never need new batteries

Feb 07, 2013 by Adam Piore
Engineer designs self-powered nanoscale devices that never need new batteries
An image of a nanoscale chip engineered by Peter Kinget's lab. He is attempting to build self-powered sensors that run on tiny bits of ambient solar energy, using so little power that their batteries never need replacing.

(Phys.org)—It's relatively simple to build a device capable of detecting wireless signals if you don't mind making one that consumes lots of power. It's not so easy to design energy-efficient devices that function as well as the components they replace, or to do it at the nano scale.

That's what Peter Kinget, a professor of electrical engineering, works on. He and his colleagues at the Engineering School are attempting to build self-powered systems using that can transmit and receive using so little power that their batteries never need replacing.

Rather, they rely on tiny bits of ambient to recharge themselves. Such energy efficiencies could dramatically cut down on the cost to operate a variety of these devices at once, while eliminating the need for maintenance. These would only need to be installed once, and could remain in place functioning autonomously—practically until they wear out or disintegrate on their own.

Kinget's work is made possible by recent advances in —in general, he explains, the smaller the components of the tiny devices, the less energy is required to allow them to operate.

"We are using and exploiting the fact that —and the energy you need to do things—becomes very, very low as you pack more and more functionality into smaller and smaller spaces," he says.

"The bad news," he adds, "is that as the become smaller, there are also clear disadvantages—nanoscale transistors are not as reliable, they cannot sustain large . The only way to deal with them is to come up with new design concepts."

Kinget's chips—some of them 100 times more energy efficient than most standard technologies—could be deployed for many different uses in future. Embedded in clothing, they could transmit the location of victims during disasters. They could be affixed to the walls of apartments across New York City and monitor heating or energy consumption patterns, which could then be analyzed to manage the heating systems or the power grid better. They could even collect and transmit data about humidity and temperature to computers designed to recognize and predict weather patterns.

While the tiny size of the components allows them to operate on far less energy, they are so fragile that they can tolerate only low voltages.

One solution is to create a device that is less accurate at detecting individual signals but far better at detecting more of them in parallel or more of them per second—"oversampling" the signals and then averaging them out.

To save power, Kinget's chips also are designed to network. Instead of passing wireless signals from their origin to destination in one giant leap, the chips use a relay system, passing signaling information from one chip to the next, like a line of citizens in a flood zone "bucket brigade" passing sandbags down a human chain to a river bank. This network relay system means that each chip only has to transmit short distances, consuming less power than large chips transmitting over a far longer range.

The chips also have a learning phase when they go online, in which they detect the intervals at which the chips in their vicinity are transmitting data and then "self-synchronize." This allows them to remain idle—consuming no power—when they are unlikely to receive transmissions from neighboring chips and switch on when they are.

"It's much simpler to build something that listens all the time," Kinget says. "But nanotechnology allows us to integrate much more sophisticated systems in tiny chips, so we can save energy."

Kinget grew up and studied in Belgium. After completing his electrical engineering Ph.D. in 1996, he worked at the famed Bell Laboratories in Murray Hill, N.J. He joined the faculty of Columbia's Department of in 2002.

Kinget and his team don't fabricate chips themselves. After designing their chips, they send their specifications to industrial factories known as silicon foundries, and then install the factory-made chips in their systems when they arrive.

Explore further: Infineon offers application optimized bipolar power modules introducing cost-effective solder bond modules

Related Stories

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Intel launches chip for tablet computers

Apr 11, 2011

Intel Corp. has launched a new chip for tablet computers, Atom processor Z670 based platform, as the world's most powerful semiconductor company aims to become a contender in the market for mobile chips.

Recommended for you

Namibia prepares for Africa's first e-vote

8 hours ago

Namibia will vote in Africa's first electronic ballot Friday, a general election that will usher in a new president and quotas to put more women in government.

GoGlove wearable aims to control life's soundtracks

11 hours ago

Technology creatives are seeing the key attraction in wearables as being in solutions that save the user from fumbling around with the phone to make app adjustments or changes, or from repeatedly taking it ...

Amazon cuts Fire phone price to ignite sales

11 hours ago

Amazon on Wednesday slashed the price of Fire mobile phones that stalled after launch early this year, becoming a drag on the US online retail titan's bottom line.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.