Study shows stressed-out cells halt protein synthesis

Jan 09, 2013 by Krishna Ramanujan
Study shows stressed-out cells halt protein synthesis
Top panel: Chaperone molecules, such as Hsc70 (green), not only assist with protein folding, but also facilitate the elongation of emerging protein chains (red) by pulling them from the protein-making machinery, called ribosomes (orange). Bottom panel: When cells are under stress, chaperones (green) are not present to pull the nascent protein chains (red) out as they emerged from a tunnel of the ribosome (orange). The lack of available chaperones causes the protein synthesis machinery to pause. Credit: Shu-Bing Qian

(Phys.org)—Cells experience stress in multiple ways. Temperature shifts, mis-folded proteins and oxidative damage can all cause cellular stress. But whatever the form of the stress, all cells quickly stop making proteins when under pressure.

A new Cornell study unravels how cells rapidly stall protein synthesis during stress and then resume their protein-making activities once the stress has passed.

If proteins continued to synthesize during stress, cells would waste energy, and damaged proteins would build up, leading to toxicity and disease.

Previously, researchers thought that during stress protein synthesis was only controlled at the point where the translation machinery starts to read mRNA, a DNA transcript carrying protein codes.

But the new study, published online Jan. 3 in the journal Molecular Cell, reports that the protein synthesis can actually be halted midway, during the subsequent phase in the protein synthesis process, called , where proteins are being made in a long chain of , like coming out of a grinder.

The researchers used a technique they developed to monitor the protein synthesis process that involves ribosomes, which decode mRNA and build chains of amino acids, a protein's . They found, in the presence of stress and mis-folded proteins, the ribosomes pause during the early elongation process, when new (chains of amino acids) were made but were still less than 50 amino acids long.

"We were very surprised," said Shu-Bing Qian, assistant professor of at Cornell and the paper's senior author. "We thought it would pause everywhere, but we only found ribosomes pausing within the first 50 amino acids. We realized the translation machinery must have a mechanism for controlling trafficking in this region."

When peptides are made, they emerge from a tunnel at the end of the that is about 30 to 50 amino acids long. "Inside the tunnel, newly formed peptides are hidden from the outer environment," said Qian. But once they emerge, molecules called chaperones help to pull them from the ribosome.

The researchers found that under stress, chaperones were not present to pull the nascent peptides out as they emerged from the tunnel. The chaperones were instead recruited to help peptides—damaged by conditions in the cell caused by stress—refold into proteins.

"Our study shows that chaperones not only help folding but also control the ribosomes," said Qian. "We used chemical inhibitors to inhibit the chaperones in unstressed cells, and they paused in exactly the same place."

While Qian and colleagues looked at this process during stress caused by mis-folding, they believe the same process occurs no matter the source of stress.

If peptides were continuously produced during stress, they would become damaged and would accumulate, leading to toxicity and disease. Cancer cells, which grow out of control, have very high levels of chaperones for continuous . Researchers have developed chaperone inhibitors as a way of curbing cancer. Such inhibitors were used in this study to inhibit the chaperones in normal cells.

Explore further: Environmental pollutants make worms susceptible to cold

Related Stories

New insights to the function of molecular chaperones

Aug 25, 2012

(Phys.org)—Heidelberg molecular biologists have gained new insights into the function of so-called molecular chaperones in protein synthesis. The team headed by Dr. Günter Kramer and Prof. Dr. Bernd Bukau ...

Researchers piece together how proteins fold

Jul 26, 2012

(Phys.org) -- A new method for looking at how proteins fold inside mammal cells could one day lead to better flu vaccines, among other practical applications, say Cornell researchers.

Raising the blockade

Dec 14, 2012

At crucial points in the metabolism of all organisms, a protein with the unwieldy name of Translation Elongation Factor P (EF-P, for short) takes center stage. What it actually does during protein synthesis has only now been ...

Scientists find important new step in protein production

May 21, 2010

(PhysOrg.com) -- Scientists at the University of Manchester have identified an extra step in protein production, a major activity of all cells, which they believe impacts particularly on how our cells respond to stresses ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0