Technique for observing 'mechanochemical' synthesis could boost green chemistry

December 2, 2012
The experimental setup at the ESRF in Grenoble (France) with the milling jar containing the white ZIF-8 shown in the front, mounted on a modified industrial mill. Credit: T. Friščić

Bulk solvents, widely used in the chemical industry, pose a serious threat to human health and the environment. As a result, there is growing interest in avoiding their use by relying on "mechanochemistry" – an energy-efficient alternative that uses high-frequency milling to drive reactions. Because milling involves the intense impact of steel balls in rapidly moving jars, however, the underlying chemistry is difficult to observe.

Now, for the first time, scientists have studied a milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixed, ground, and transformed simple ingredients into a complex product. This research, reported Dec. 2 in Nature Chemistry, promises to advance scientists' understanding of processes central to the pharmaceutical, metallurgical, cement and mineral industries – and could open new opportunities in "" and environmentally friendly .

The international team of researchers was led by Tomislav Friščić of McGill University in collaboration with Ivan Halasz from the University of Zagreb in Croatia, and scientists from the University of Cambridge, the Max-Planck-Institute for Solid State Research in Stuttgart, Germany, and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

While mechanical action can break —for example, in the wear and tear of textile fibers— can also be used to synthesize new and materials. In recent years, ball milling has become increasingly popular in the production of highly complex chemical structures. In such synthesis, steel balls are shaken with the reactants and catalysts in a rapidly vibrating jar. Chemical transformations take place at the sites of ball collision, where impact causes instant "hot spots" of localized heat and pressure. This is difficult to model and, without access to real time reaction monitoring, mechanochemistry remained poorly understood.

This is a graphical representation of the ZIF-8 metal-organic framework (bottom) and the simple components it was produced from, within 30 minutes of mechanochemical action. Credit: Nature Publishing Group

"When we set out to study these reactions, the challenge was to observe the entire reaction without disturbing it, in particular the short-lived intermediates that appear and disappear under continuous impact in less than a minute", says Friščić, an assistant professor in McGill's Department of Chemistry.

The team of scientists chose to study mechanochemical production of the metal-organic framework ZIF-8 from the simplest and non-toxic components. Materials such as ZIF-8 are rapidly gaining popularity for their ability to capture large amounts of CO2; if manufactured cheaply and sustainably, they could become widely used for carbon capture and storage, catalysis and even hydrogen storage.

"The team came to the ESRF because of our high-energy X-rays capable of penetrating 3 mm thick walls of a rapidly moving reaction jar made of steel, aluminium or plastic. The X-ray beam must get inside the jar to probe the mechanochemical formation of ZIF-8, and then out again to detect the changes as they happened", says Simon Kimber, a scientist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, who is a member of the team. This unprecedented methodology enabled the real-time observation of reaction kinetics, reaction intermediates and the development of their respective nanoparticles.

In principle, this technique could be used to study all types of reactions in a ball mill, and optimize them for processing in a range of industries. "That would translate into good news for the environment, for industry—and for consumers," Friščić says.

Explore further: Innovation in Nanoporous Chemistry

Related Stories

Innovation in Nanoporous Chemistry

September 30, 2005

Science researchers from the University of Versailles (France), in collaboration with the ID31 beam line at the European Synchrotron Radiation Facility (ESRF), report their progress in the design and characterisation of microporous ...

Measuring Synthesis Intermediates for Better Materials

November 1, 2006

Involved in about 90 percent of all chemical processes and the creation of about 60 percent of the chemical products available on the market, catalysis is vital to American industries. Catalysis, the acceleration of a chemical ...

Freeze: Scientists film protein in action

April 19, 2007

It is difficult to find similarities between Grenoble and Hollywood or between the researchers at the ESRF and the Institut de Biologie Structural (IBS) and world-known filmmakers. However, scientists from these institutes ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.