Artificial metalloenzymes, the chemical synthesis of the future

October 21, 2010 By Elsa Champion
Example of chemical kinetics observed within a crystal. Left: Iron complex in a protein crystal. Centre: Conformational modification of the complex after iron reduction. Right: Incorporation of oxygen into the complex after molecular oxygen activation. Credit: CEA

Researchers at CEA, Joseph Fourier University and CNRS have developed a new approach combining protein crystallography and biomimetic chemistry for observing they key steps of a process essential to life: oxygen activation. This was achieved by creating a complex artificial metalloenzyme composed of a chemical catalyst and a protein and observing it via X-ray crystallography at the European Synchrotron Radiation Facility (ESRF). The results obtained constitute an essential step towards the development of artificial metalloenzymes capable of producing various molecules of industrial interest more efficiently and at a lesser cost, thereby opening new prospects for green chemistry. These results are published online by Nature Chemistry.

A large number of chemical molecules exist in two forms with inverted, mirror-like structures (enantiometers). In many cases, only one of the two molecular forms is of interest for the healthcare, agricultural or food industries. Molecular chemical synthesis has the disadvantage of producing both molecular forms (enantioselective ), and therefore a non-negligible quantity of molecules without interest. In order to isolate the form of interest, complex and expensive purification phases need to be implemented.

Nature is far more efficient than . Indeed, enzymes are generally capable of directly producing the molecular form of interest. Hence the idea of using them for industrial applications. However, the number of natural enzymes available to produce the reactions of interest remains low. Homogeneous chemical catalysts can be used to produce a large number of reactions, but often with low catalyst stability and lack of specificity.

This has led to the idea of combining chemistry and biology to create artificial metalloenzymes. Their structure consists of an inorganic catalyst incorporated in an inactive . Each constituent plays its part: the inorganic catalyst determines the nature of the reaction by acting as the active site, and the protein structure controls the production of the molecular form of interest and the efficiency of the reaction.

Although, conceptually speaking, these artificial metalloenzymes offer huge prospects for green chemistry, there still remains the technological challenge of engineering efficient enzymes for producing each molecule of interest. This entails identifying the best protein/catalyst pair, understanding its functioning, adapting it, etc.

By developing a method to observe the progress of the chemical reaction in the active site over time, these researchers have completed an essential step in the development of metalloenzymes. "At present, we have observed the functioning of a molecular oxygen activation reaction. This reaction is used in a large number of cellular processes essential to life", explains Stéphane Ménage, CNRS researcher of the Bioinspired Redox Chemistry team at the Life Sciences and Technologies Research Institute (IRTSV).

In order to study this reaction, the researchers have mimicked it by introducing an aromatic cycle in an iron complex and then incorporating this complex into a protein whose sole function is nickel transport in Escherichia coli bacteria. This protein therefore does not disturb the chemical oxygen activation reaction. The researchers have then crystallized this artificial metalloenzyme and directly observed the evolution of the reaction within the crystal via X-ray crystallography. "The crystal enables the diffusion of the reaction substrates and intermediaries. The enzyme remains active in the crystal, and the various steps of the reaction can be observed directly therein", explains Christine Cavazza, CEA researcher at the and Crystallogenesis Laboratory of the Institute of Structural Biology (IBS). "We can thus observe the incorporation of oxygen atoms into an aromatic core".

"The most extraordinary aspect for us chemists is that this combination of chemical and biological properties has enabled us to observe all the steps of this reaction, something no chemist had previously achieved", explains Stéphane Ménage. "This is essential for studying the functioning of the chemically synthesized active site. We can then adapt its structure according to the characteristics sought".

Explore further: Chemists uncover 'green' catalysts with promise for cheaper drug production

More information: Crystallographic snapshots of the reaction of aromatic C–H with O2 catalysed by a protein-bound iron complex. Christine Cavazza, et al. Nature Chemistry, online, 2010.

Related Stories

Vitamin B1 biosynthesis: Think Rubik's cube

November 20, 2008

( -- A key enzyme in the biosynthesis of vitamin B1 has somehow evolved the ability to perform a complex series of some 15 to 20 steps, report two Cornell chemists.

Clicking synthetic and biological molecules together

February 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

Chemists reinvent the science and industry of making plastics

October 12, 2006

Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.