Disappearing light: Precision measurement of an atomic transition

December 6, 2012
Graduate student Creston Herold.

(Phys.org)—Modern precision measurements are spectacular feats of engineering. An excellent example is determining the passage of time. Before John Harrison's marine chronometer in the mid 18th century, ship clocks lost so much time that the sailors themselves often became lost as well. Today's global positioning system (GPS) relies on rubidium and cesium atomic clocks aboard satellites. These clocks, precise to about one second per 30,000 years are far better than those used in the early days of navigation. Currently, the most accurate clock in the world is located at NIST in the lab of 2012 Nobel Prize recipient David Wineland. He uses quantum logic and an atomic ion to make a clock that is off by only one second over about 4 billion years. While not every application requires a clock of this caliber, scientists are continually looking to improve time-keeping, whether it is for defining the second* or for GPS. One essential ingredient for improvement is a better understanding of the properties of the atoms used in these types of clocks.

In a recently accepted Physical Review Letter, JQI researchers present a novel method to measure the strength of two of rubidium's with unprecedented accuracy. Lead author and graduate student Creston Herold explains, "While our measurement only has a slight impact on the precision of rubidium atomic clocks, this proof-of-principle experiment could be extended to improve next generation clocks built from other elements of the periodic table."

Unlike Harrison's spring-and-gear based clocks, the "ticks" of today's atomic clocks are based on the that arise from the interactions of the swirling electrons and nucleus within an atom. Scientists can measure an atom's ticking rate by adjusting the frequency of , from an outside source, to precisely match the separation between energy levels. When matched, the radiation causes electrons to undergo transitions.

Similar to Harrison's mechanical clocks, an atom's ticking rate depends on environmental factors, such as temperature. For instance, the blackbody radiation shift (BBR) happens because everything, including atomic clocks, is bathed in infrared radiation emitted from the environment due to its temperature. The presence of this light can slightly shift the energy separation between the levels. Accounting for these shifts is currently one of the most important limitations on precision clocks. While physicists can estimate the atomic transition amplitudes that determine the sensitivity to spurious radiation, experimental atomic spectroscopy is necessary to constrain and provide a benchmark for theoretical calculations.

BBR falls under the umbrella of radiation-induced changes in energy levels—or light shifts. In this experiment, lasers are the primary source of radiation. In order to measure transition amplitudes, or how strongly an atom interacts with the , scientists must apply a probe. The problem is that the probes for atoms are also electromagnetic fields themselves, influencing the measurement. Such a circular solution can sometimes limit the measurement accuracy.

To circumvent this, the JQI scientists apply laser beams in such a way that cumulatively the light shifts due to the probe cancel. Only when the light has a certain wavelength will the contributions from different transitions exactly cancel – a "magic" wavelength where the atoms no longer feel the presence of the light.

In the experiment, a cloud of rubidium atoms is cooled close to absolute zero where it forms a state of matter called a Bose-Einstein condensate (BEC). Then, the atoms are diffracted by a standing wave of laser light. Because the atoms in a BEC act like waves, much like ripples on a pond encountering an obstacle, they form an interference pattern with peaks and valleys. The height of these peaks and valleys depends on the wavelength of the laser light. Interference patterns only occur when the atoms experience a light shift.

The scientists can use an instrument called a wavemeter to determine the color of the standing wave precisely. This tells them not only exactly what shade of blue the light is (~420 nanometers), but also that the uncertainty is 50 femtometers (10-15 m). To give a sense of scale, this would be like knowing the weight of a 150 lb person to 0.0003 ounces, which is about the weight of a strand of hair.

As the scientists tune the wavelength of light close to the point where the light shift disappears, the diffraction signal necessarily diminishes because the laser light becomes invisible to the rubidium atoms. So how can they achieve such precision when the atoms barely feel the light? They use a trick of applying the standing wave repeatedly such that the interference effects add up. In this way, tiny light shifts can be detected (see animation). With this method, the team determines the transition strength to an accuracy of 0.3 %. Using the weight analogy, this is about half a pound, or the resolution of your bathroom scale. This seems like a lot compared to the wavemeter, but it is in fact 10 times better than previous theoretical calculations of this atomic transition.

Current methods for determining transition strengths involves measuring an excited state's lifetime, which is the length of time an excited electron can stay this way before it decays. This method is limited because of uncertainty in the different decay pathways. Other methods that involve laser illumination are inherently uncertain because measuring optical intensity independently of the atom, say with a detector, is limited by the detector itself. In other words, counting photons is hard (see this article on single photon detection).

One of the ultimate goals of this research is to mix ultracold ytterbium and rubidium together in such a way that the ytterbium "sees" the laser and the rubidium is "blind." For this reason, they were motivated to make the precision measurement presented here. Due to technical nature of these kinds of experiments, using multiple types of atoms is quite difficult, requiring many more lasers of different colors. This team is one of a handful of groups that will study these types of mixtures. Some of the questions they will attempt to answer are related to dissipation, where energy from the ytterbium atoms can be removed and absorbed by a rubidium bath.

Explore further: Optical Atomic Clock: A long look at the captured atoms

More information: Herold, C.D., et al., Precision Measurement of Transition Matrix Elements via Light Shift Cancellation, Physical Review Letters early December, 2012.

Related Stories

Optical Atomic Clock: A long look at the captured atoms

February 5, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Portable Precision: A New Type of Atomic Clock

December 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Portable Precision: A New Type of Atomic Clock

June 11, 2009

The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. ...

New 'pendulum' for the ytterbium clock

March 9, 2012

The faster a clock ticks, the more precise it can be. Due to the fact that lightwaves vibrate faster than microwaves, optical clocks can be more precise than the caesium atomic clocks which presently determine time. The Physikalisch-Technische ...

New technique excites atoms and molecules using pulsed laser

November 22, 2012

The best method to obtain the most precise information on the inner structure of atoms and molecules is to excite them by means of resonant laser light. Unfortunately, just this laser light (above a certain intensity) can ...

Recommended for you

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 06, 2012
Well written. Accessible understanding for those outside this field of research/physics.
not rated yet Dec 07, 2012
Well written. Accessible understanding for those outside this field of research/physics.

Interference patterns only occur when the atoms experience a light shift.why? thank you!!
1 / 5 (1) Dec 07, 2012
Attempted explanation:
When waves having random phase differences between them superimpose, no discernible interference pattern is produce.
1 / 5 (1) Dec 07, 2012
Atoms are only diffracted if their velocity is matched to their incidence angle at the standing light wave, the "light crystal," by the Bragg condition; otherwise they just traverse the light field without deflection.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.