Hydrogel remembers its shape

Dec 05, 2012 by Bill Steele
Hydrogels made in the form of the letters D, N and A collapse into a liquid-like state on their own but return to the original shape when surrounded by water. Credit: Luo Lab

(Phys.org)—A bit reminiscent of the Terminator T-1000, a new material created by Cornell researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape.

Rather than , it is a hydrogel, a mesh of with many small empty spaces that can absorb water like a sponge. It qualifies as a "metamaterial" with properties not found in nature and may be the first organic metamaterial with mechanical meta-properties.

Hydrogels have already been considered for use in —the spaces can be filled with drugs that release slowly as the biodegrades—and as frameworks for tissue rebuilding. The ability to form a gel into a desired shape further expands the possibilities. For example, a drug-infused gel could be formed to exactly fit the space inside a wound.

Dan Luo, professor of biological and environmental engineering, and colleagues describe their creation in the Dec. 2 issue of the journal Nature Nanotechnology.

This video is not supported by your browser at this time.

The new hydrogel is made of synthetic DNA. In addition to being the stuff are made of, DNA can serve as a building block for self-assembling materials. Single strands of DNA will lock onto other single stands that have complementary coding, like tiny organic Legos. By synthesizing DNA with carefully arranged complementary sections Luo's research team previously created short stands that link into shapes such as crosses or Y's, which in turn join at the ends to form meshlike structures to form the first successful all-DNA hydrogel. Trying a new approach, they mixed with enzymes that cause DNA to self-replicate and to extend itself into long chains, to make a hydrogel without DNA linkages.

"During this process they entangle, and the produces a 3-D network," Luo explained. But the result was not what they expected: The hydrogel they made flows like a liquid, but when placed in water returns to the shape of the container in which it was formed.

"This was not by design," Luo said.

Hydrogel remembers its shape
Under an electron microscope the material is revealed to consist of tiny "bird's nests" of tangled DNA, top, which are tied together by more DNA stands into a mass, bottom. The tangled structure creates many tiny spaces that absorb water like a sponge. Credit: Luo Lab

Examination under an electron microscope shows that the material is made up of a mass of tiny spherical "bird's nests" of tangled DNA, about 1 micron (millionth of a meter) in diameter, further entangled to one another by longer DNA chains. It behaves something like a mass of rubber bands glued together: It has an inherent shape, but can be stretched and deformed.

Exactly how this works is "still being investigated," the researchers said, but they theorize that the elastic forces holding the shape are so weak that a combination of surface tension and gravity overcomes them; the gel just sags into a loose blob. But when it is immersed in water, surface tension is nearly zero—there's water inside and out—and buoyancy cancels gravity.

To demonstrate the effect, the researchers created hydrogels in molds shaped like the letters D, N and A. Poured out of the molds, the gels became amorphous liquids, but in water they morphed back into the letters. As a possible application, the team created a water-actuated switch. They made a short cylindrical gel infused with metal particles placed in an insulated tube between two electrical contacts. In liquid form the gel reaches both ends of the tube and forms a circuit. When water is added. the gel reverts to its shorter form that will not reach both ends. (The experiment is done with distilled that does not conduct electricity.)

The DNA used in this work has a random sequence, and only occasional cross-linking was observed, Luo said. By designing the DNA to link in particular ways he hopes to be able to tune the properties of the new .

Explore further: Gold nanoparticles help target, quantify breast cancer gene segments in a living cell

Related Stories

DNA-based gel produces proteins without live cells

Apr 01, 2009

(PhysOrg.com) -- A new method developed by Cornell biological engineers offers an efficient way to make proteins for use in medicine or industry without the use of live cells. The proteins made in this way ...

Improving DNA analysis

Sep 09, 2010

DNA analysis is poised to experience a significant advancement thanks to the work of a Texas A&M University chemical engineer, who has discovered a way to achieve more effective separation of DNA fragments.

Researchers create DNA buckyballs for drug delivery

Aug 29, 2005

DNA isn't just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing ...

DNA nanoparticles to carry drugs and gene therapy

Apr 22, 2011

(PhysOrg.com) -- DNA isn't just for genetics anymore. Cornell researchers are using synthetic DNA to make nanoparticles, dubbed DNAsomes, that can deliver drugs and genetic therapy to the insides of cells.

Recommended for you

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (4) Dec 05, 2012
thats a pretty cool bartrick that could earn me a couple of beers, where do i order that gel?
1 / 5 (2) Dec 05, 2012
lol. Second only to protein folding.

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.