Biologists unlocking the secrets of plant defenses, one piece at a time

Dec 05, 2012

Researchers examining how the hormone jasmonate works to protect plants and promote their growth have revealed how a transcriptional repressor of the jasmonate signaling pathway makes its way into the nucleus of the plant cell.

They hope the recently published discovery will eventually help farmers experience better crop yields with less use of potentially .

"This is a small piece of a bigger picture, but it is a very important piece," said Maeli Melotto, a University of Texas at Arlington assistant professor of biology.

Melotto recently co-authored a paper that advances current understanding of plant defense mechanisms with her collaborator Sheng Yang He and his team at Michigan State University's Department of Energy Plant Research Laboratory (DOE-PRL). He is a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation investigator. A paper on the collaboration was published online Nov. 19 in the under the title, "Transcription factor-dependent nuclear import of transcriptional repressor in jasmonate hormone signaling."

Jasmonate signaling has been a target of intense research because of its important role in maintaining the balance between plant growth and defense. In healthy plants, jasmonates play a role in and growth responses. But, when stressors such as , pathogen attack, or drought, jasmonate signaling shifts to defense-related cellular processes.

The team from UT Arlington and Michigan State focused on the role of jasmonate signaling repressors referred to as JAZ. Specifically, they looked at how JAZ interacts with a major transcription factor called MYC2 and a protein called COI1, which is a receptor necessary for jasmonate signaling.

The researchers discovered that a physical interaction between the repressors and the MYC2 persisted inside the plant cell nucleus, preventing jasmonate-associated .

"This tight repression of may be important because activation of jasmonate signaling, although important for plant defense against pathogens and insects, is energy-consuming and could lead to growth inhibition – a widely known phenomenon called growth-defense tradeoff," said He, the Michigan State plant biologist. "In other words, plants have developed a mechanism to tightly repress presumably energy-consuming, jasmonate-mediated defense responses until it becomes necessary, such as upon pathogen and insect attacks."

The National Institutes of Health, the U.S. Department of Energy, Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation funded the work featured in the recent paper.

Melotto said understanding jasmonate signaling at the molecular level is also vital because some plant pathogens, such as Pseudomonas syringae, have developed ways to mimic the hormone's action in the cell. This gives them the ability to aggressively colonize plants without activating natural defense mechanisms, she said.

Melotto, who is currently receiving National Institutes of Health funding to examine plant defenses, said the next step in her jasmonate research is to determine which domain of the JAZ protein is responsible for plant innate immunity.

"This is one way to have sustainable agriculture," Melotto said of the research. "By increasing genetic resistance we could reduce the use of pesticides, decrease crop production costs and promote environmentally friendly farming practices."

Explore further: International team completes genome sequence of centipede

More information: www.pnas.org/content/early/201… /1210054109.abstract

Related Stories

Researchers JAZ(zed) about plant resistance discovery

Jul 18, 2007

The mystery of how a major plant hormone works to defend plants against invaders has been revealed, thanks to collaborative research efforts by Michigan State University and Washington State University.

A bit touchy: Plants' insect defenses activated by touch

Apr 09, 2012

A new study by Rice University scientists reveals that plants can use the sense of touch to fight off fungal infections and insects. The study, which will be published in the April 24 issue of Current Biology, finds ...

Researchers find mechanism that gives plants 'balance'

Apr 23, 2012

When a plant goes into defense mode in order to protect itself against harsh weather or disease, that's good for the plant, but bad for the farmer growing the plant. Bad because when a plant acts to defend ...

Anti-cancer flower power

Aug 25, 2008

Could a substance from the jasmine flower hold the key to an effective new therapy to treat cancer? Prof. Eliezer Flescher of The Sackler Faculty of Medicine, Tel Aviv University thinks so. He and his colleagues have developed ...

Recommended for you

Cataloguing 10 million human gut microbial genes

20 hours ago

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

New device could make large biological circuits practical

Nov 24, 2014

Researchers have made great progress in recent years in the design and creation of biological circuits—systems that, like electronic circuits, can take a number of different inputs and deliver a particular ...

Model evaluates where bioenergy crops grow best

Nov 24, 2014

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.