Biologists unlocking the secrets of plant defenses, one piece at a time

December 5, 2012

Researchers examining how the hormone jasmonate works to protect plants and promote their growth have revealed how a transcriptional repressor of the jasmonate signaling pathway makes its way into the nucleus of the plant cell.

They hope the recently published discovery will eventually help farmers experience better crop yields with less use of potentially .

"This is a small piece of a bigger picture, but it is a very important piece," said Maeli Melotto, a University of Texas at Arlington assistant professor of biology.

Melotto recently co-authored a paper that advances current understanding of plant defense mechanisms with her collaborator Sheng Yang He and his team at Michigan State University's Department of Energy Plant Research Laboratory (DOE-PRL). He is a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation investigator. A paper on the collaboration was published online Nov. 19 in the under the title, "Transcription factor-dependent nuclear import of transcriptional repressor in jasmonate hormone signaling."

Jasmonate signaling has been a target of intense research because of its important role in maintaining the balance between plant growth and defense. In healthy plants, jasmonates play a role in and growth responses. But, when stressors such as , pathogen attack, or drought, jasmonate signaling shifts to defense-related cellular processes.

The team from UT Arlington and Michigan State focused on the role of jasmonate signaling repressors referred to as JAZ. Specifically, they looked at how JAZ interacts with a major transcription factor called MYC2 and a protein called COI1, which is a receptor necessary for jasmonate signaling.

The researchers discovered that a physical interaction between the repressors and the MYC2 persisted inside the plant cell nucleus, preventing jasmonate-associated .

"This tight repression of may be important because activation of jasmonate signaling, although important for plant defense against pathogens and insects, is energy-consuming and could lead to growth inhibition – a widely known phenomenon called growth-defense tradeoff," said He, the Michigan State plant biologist. "In other words, plants have developed a mechanism to tightly repress presumably energy-consuming, jasmonate-mediated defense responses until it becomes necessary, such as upon pathogen and insect attacks."

The National Institutes of Health, the U.S. Department of Energy, Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation funded the work featured in the recent paper.

Melotto said understanding jasmonate signaling at the molecular level is also vital because some plant pathogens, such as Pseudomonas syringae, have developed ways to mimic the hormone's action in the cell. This gives them the ability to aggressively colonize plants without activating natural defense mechanisms, she said.

Melotto, who is currently receiving National Institutes of Health funding to examine plant defenses, said the next step in her jasmonate research is to determine which domain of the JAZ protein is responsible for plant innate immunity.

"This is one way to have sustainable agriculture," Melotto said of the research. "By increasing genetic resistance we could reduce the use of pesticides, decrease crop production costs and promote environmentally friendly farming practices."

Explore further: Researchers JAZ(zed) about plant resistance discovery

More information: www.pnas.org/content/early/2012/11/16/1210054109.abstract

Related Stories

Researchers JAZ(zed) about plant resistance discovery

July 18, 2007

The mystery of how a major plant hormone works to defend plants against invaders has been revealed, thanks to collaborative research efforts by Michigan State University and Washington State University.

Anti-cancer flower power

August 25, 2008

Could a substance from the jasmine flower hold the key to an effective new therapy to treat cancer? Prof. Eliezer Flescher of The Sackler Faculty of Medicine, Tel Aviv University thinks so. He and his colleagues have developed ...

A bit touchy: Plants' insect defenses activated by touch

April 9, 2012

A new study by Rice University scientists reveals that plants can use the sense of touch to fight off fungal infections and insects. The study, which will be published in the April 24 issue of Current Biology, finds that ...

Researchers find mechanism that gives plants 'balance'

April 23, 2012

When a plant goes into defense mode in order to protect itself against harsh weather or disease, that's good for the plant, but bad for the farmer growing the plant. Bad because when a plant acts to defend itself, it turns ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.