Size matters when reducing NiO nanoparticles

Nov 27, 2012 by Matt Shipman
The number and location of nucleation sites of nickel metal within nickel oxide nanoparticles during their reduction with hydrogen strongly depend on the nanoparticle size.

(Phys.org)—New research finds that size plays a major role in how nanoscale nickel oxide (NiO) shells behave when being reduced to solid nickel nanoparticles.

"This advances our fundamental understanding of how the structures of nanoparticles can be changed through , which has potential applications in and ," says Joe Tracy, a materials scientist at NC State and co-author of a paper on the work.

The researchers began by exposing nickel nanoparticles to air at 500 degrees Celsius in order to create NiO shells. This process is called oxidation. The smaller shells, 12 to 24 (nm) in diameter, are hollow, with the shell surrounding a single cavity. Larger shells, 40 to 96 nm in diameter, appear to have larger pores, and possibly contain multiple cavities.

The researchers then placed the shells in a environment at 350 degrees C. This process, called reduction, turns the NiO shells back into solid nickel nanoparticles.

What they found was that the size of the NiO shells dramatically affects the way that the reduction process manifests itself.

Image of a partially reduced 40 nm nickel oxide nanoparticle. The nickel region is colored red, and the nickel oxide is colored green. Click to enlarge image.

The smallest shells the researchers looked at, 12 nm in diameter, formed a single nucleation site of pure nickel, which then expanded to replace all of the NiO. Larger shells, 24 nm in diameter, responded differently – forming multiple nucleation sites in an approximate ring shape around the shell. These nucleation sites then grew and merged into a single nickel nanoparticle. The largest shells they looked at, 96 nm in diameter, looked more different still, with multiple nucleation sites forming throughout the NiO.

"The size of the nanoparticles before oxidation determines both the structure of the NiO nanoparticles and the pattern of the nucleation sites of nickel metal during reduction," says John Medford, an undergrad at NC State and lead author of the paper.

The paper, "Nanostructural Transformations During the Reduction of Hollow and Porous Nanoparticles," was published online Nov. 20 in the Royal Society of Chemistry journal Nanoscale.

Explore further: Demystifying nanocrystal solar cells

More information: pubs.rsc.org/en/Content/Articl… g/2013/NR/c2nr33005a

Related Stories

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.