High-strength material advancements may lead to new, life-saving steel

Nov 05, 2012

There has been great advancements in the development of the high-strength steel and the need for additional enhancements continue to grow. Various industries have a need for structural components that are lighter and stronger, improve energy efficiencies, reduce emissions and pollution increase safety and cost less to produce, particularly in the automotive industry.

A group of researchers in Wayne State University's College of Engineering have been working to create with high-yield strength, and ductility. Their efforts have led to the development of a new material consisting of bainitic steels and austempered ductile iron that has all these characteristics, ultimately resisting fatigue that can cause fractures in materials often with catastrophic consequences.

The group, led by Susil Putatunda, Ph.D., professor of chemical engineering and in WSU's College of Engineering, has focused on developing using unique processing technique. These materials are processed from existing raw materials used in the industry and can be heat treated using currently available industrial austempering process. According to Putatunda, this third generation advanced high strength steel has a number of advantages over the currently available steels currently being used in industry today.

"Our steel has twice the yield strength, has a very high tensile strength, and is close to three times the fracture toughness over advanced steels currently on the market," said Putatunda. "In addition, it has improved strength for fatigue and impact, improved durability, lower weight, and the austempering process reduces and eliminates the post-treatment process."

The new steel being developed by Putatunda's research group is a high bainitic steel with an extremely fine scale microstructure consisting of and carbon stabilized austenite. It has high carbon and high silicon content, and after the austempering process - an isothermal heat treatment - produced a structure that is stronger and tougher than other types of steel. The austempering process is a more energy efficient heat treatment process that does not require post-heat treatment, therefore leading to additional energy savings.

Putatunda continues to do research on his high-strength steel through the support of the National Science Foundation, the Michigan Initiative for Innovation & Entrepreneurship, and Applied Process, Inc. Independent ballistic tests done in Canada have been conducted and have shown excellent results. As a consequence, the steel may be useful in improvised ballistic explosive attacks.

"The steel has been found to have the strength and durability necessary for armored vehicles to resist improvised explosive devices because of its extremely high fracture toughness," said Putatunda. "Our steel could potentially save human lives against explosive attacks."

This technology is ideally suited for cast steel parts and is currently in the manufacturing validation development stage at a steel casting plant.

Explore further: Wireless sensor transmits tumor pressure

More information: To learn more about Putatunda's research, visit www.eng.wayne.edu/page.php?id=511

add to favorites email to friend print save as pdf

Related Stories

High-performance steel used in new bridge

Aug 31, 2006

The Illinois Department of Transportation (IDOT) today announced the completion of a new bridge in Lake Villa, Lake County, Ill., constructed with a groundbreaking type of high-performance steel developed by engineering researchers ...

Antibacterial stainless steel created

Jul 19, 2011

Materials scientists at the University of Birmingham have devised a way of making stainless steel surfaces resistant to bacteria in a project funded by the Engineering and Physical Sciences Research Council which culminated ...

Recommended for you

Wireless sensor transmits tumor pressure

Sep 20, 2014

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Seeing through the fog (and dust and snow) of war

Sep 19, 2014

Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often ...

The oscillator that could makeover the mechanical watch

Sep 18, 2014

For the first time in 200 years the heart of the mechanical watch has been reinvented, thereby improving precision and autonomy while making the watch completely silent. EPFL researchers have developed an ...

User comments : 0