Hagfish slime as a model for tomorrow's natural fabrics

Nov 28, 2012
Hagfish slime as a model for tomorrow's natural fabrics

Nylon, Kevlar and other synthetic fabrics: Step aside. If new scientific research pans out, people may be sporting shirts, blouses and other garments made from fibers modeled after those in the icky, super-strong slime from a creature called the hagfish. The study appears in ACS' journal Biomacromolecules.

Lead author Atsuko Negishi, her supervisor Douglas S. Fudge and colleagues explain that petroleum is the raw material for making modern synthetics. Rising prices and the quest for more sustainable alternatives have led scientists to consider the possibilities of using protein-based raw materials, such as spider silk. Another candidate comes from the hagfish, an eel-like fish that produces a thick slime to protect itself against predators. A single Atlantic Hagfish can produce quarts of slime in seconds. It clogs the gills and may suffocate other fish. The slime consists of tens of thousands of remarkably strong threads, each 100 times thinner than a human hair. The scientists set out to investigate spinning spider-silk-like fibers from the proteins of these slime threads.

They developed a method for drawing hagfish slime thread proteins into fibers comparable to lab-made . It involved casting a thin self-supporting film of thread proteins on the surface of a salt solution, then grabbing it with forceps and lifting it upwards so it collapses into a single strand. The threads in hagfish slime, they indicate, might be models for made from renewable, naturally occurring proteins.

Explore further: Spinach could lead to alternative energy more powerful than Popeye

More information: "The Production of Fibers and Films from Solubilized Hagfish Slime Thread Proteins" Biomacromolecules, 2012, 13 (11), pp 3475–3482. DOI: 10.1021/bm3011837

Abstract
Hagfish slime threads, which make up the fibrous component of the defensive slime of hagfishes, consist primarily of proteins from the intermediate filament family of proteins and possess impressive mechanical properties that make them attractive biomimetic models. To investigate whether solubilized intermediate filament proteins can be used to make high-performance, environmentally sustainable materials, we cast thin films on the surface of electrolyte buffers using solubilized hagfish slime thread proteins. The films were drawn into fibers, and the tensile properties were measured. Fiber mechanics depended on casting conditions and postspinning processing. Postsecondary drawing resulted in fibers with improved material properties similar to those of regenerated silk fibers. Structural analyses of the fibers revealed increased molecular alignment resulting from the second draw, but no increase in crystallinity. Our findings show promise for intermediate filament proteins as an alternative source for the design and production of high performance protein-based fibers.

add to favorites email to friend print save as pdf

Related Stories

Silkworms spinning spider webs

Jan 03, 2012

(PhysOrg.com) -- A spiders silk is strong and more elastic and has a large range of possible medical applications. However, spiders have a history of being territorial and prone to cannibalism, so the idea ...

Scientists film hagfish anti-shark slime weapon

Oct 28, 2011

(PhysOrg.com) -- The hagfish found in New Zealand’s deepest waters is grotesque enough, thanks to its scary protruding teeth straight from a horror film.  Now, scientists have witnessed the full ...

Hagfish found to eat through its skin

Mar 03, 2011

(PhysOrg.com) -- A new study in Canada has shown that the primitive fish called the Hagfish, which has the habit of burrowing into dead or dying creatures on the sea bed, eats by absorption through its skin ...

Why spiders don't drop off of their threads

Aug 17, 2011

It has five times the tensile strength of steel and is stronger then even the best currently available synthetic fibers: Spider thread. German scientists of the Technische Universitaet Muenchen and the Universitaet Bayreuth ...

Fascinating Spider Silk

Apr 04, 2007

Stronger than steel and more elastic than rubber: spider silk is unsurpassed in its expandability, resistance to tearing, and toughness. Spider silk would be an ideal material for a large variety of medical and technical ...

Recommended for you

A new approach to creating organic zeolites

4 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

VendicarD
5 / 5 (1) Nov 28, 2012
Odd isn't it, that just shy of 50 percent of Americans think that Republican slime represents the future.
Jeddy_Mctedder
1 / 5 (4) Nov 28, 2012
Silky smooth or slimy smooth¿