Study sheds light on genetic 'clock' in embryonic cells

November 13, 2012

As they develop, vertebrate embryos form vertebrae in a sequential, time-controlled way. Scientists have determined previously that this process of body segmentation is controlled by a kind of "clock," regulated by the oscillating activity of certain genes within embryonic cells. But questions remain about how precisely this timing system works.

A new international cross-disciplinary collaboration between physicists and researchers advances scientists' understanding of this crucial biological timing system. The study, co-authored by McGill University Prof. Paul François and Ohio State University Prof. Sharon L. Amacher and published in Developmental Cell, sheds light on the clock mechanism by providing the first real-time, visual evidence of how it operates at the level of individual .

While previous scientific studies have examined the oscillation phenomenon in the tissue of , the McGill and Ohio State researchers were able to observe and analyze it in single cells. To do so, they genetically modified zebrafish – a whose body is nearly transparent during early development, making its anatomy easy to observe. The researchers used a fluorescent marker in the transgenic fish and developed software tools to monitor the concentration of a certain "cyclic" protein, whose production rises and falls with the oscillating expression of the molecular .

It is known that cells communicate with neighboring cells through a messaging system known as the . In their experiments with the zebrafish, the researchers cut off this inter- network – enabling them to see how that would affect the oscillation pattern in individual cells and their neighbors.

These experiments revealed that cyclic protein concentrations in individual cells of the zebrafish continued to rise and fall, indicating that they continued to oscillate. With the inter-cellular signaling pathway blocked, however, the oscillations were no longer synchronized among neighboring cells. The cellular clocks were still ticking, in other words, but not in unison. This finding confirms that the Notch pathway serves to coordinate timing among cells – a crucial role, since the cells must act in concert in order to form vertebrae.

By observing normal zebrafish embryos, the researchers were also able to show that cells desynchronize their oscillations while performing cellular division, then later resynchronize with their neighbors as they proceed collectively to form vertebrae.

"In humans, defects in Notch signaling are associated with congenital developmental disorders called spondylocostal dysostosis, that are typified by scoliosis and trunk dwarfism caused by malformed ribs and vertebrae," Amacher notes. "Studies such as ours may provide insight into potential therapies for human disease. It is likely that many cells in our bodies - stem cells, cancer cells - have similar molecular oscillators that regulate response to environmental signals. By unraveling such molecular clocks, we can understand how to modify them and thus change the number of oscillating cells that respond to differentiating signals, providing tremendous insight for studies in stem cell and cancer biology and tissue engineering."

"The formation of the vertebral column is very important, because everything follows from that" in the development of vertebrates, François adds. A physicist, he developed the computer tools used to analyze video footage of the zebrafish embryos. Francois's research focuses on the modeling of physical properties of gene networks and their evolution – a field that has emerged at the nexus of biology and physics in recent years, following sequencing of the human genome and rapid growth in scientists' understanding of the processes inside cells.

Explore further: When is a stem cell not really a stem cell?

Related Stories

When is a stem cell not really a stem cell?

August 26, 2007

Working with embryonic mouse brains, a team of Johns Hopkins scientists seems to have discovered an almost-too-easy way to distinguish between “true” neural stem cells and similar, but less potent versions. Their finding, ...

Recommended for you

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

Fighting explosives pollution with plants

September 3, 2015

Biologists at the University of York have taken an important step in making it possible to clean millions of hectares of land contaminated by explosives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.