Antenna-on-a-chip rips the light fantastic

Nov 16, 2012
Crystalline silicon sits between two electrodes in a microscopic antenna-on-a-chip designed by researchers at Rice University. The chip, a spatial light modulator, couples with incident light and makes possible the manipulation of infrared light at very high speeds for signal processing and other optical applications. Credit: Xu Group/Rice University

(Phys.org)—A device that looks like a tiny washboard may clean the clocks of current commercial products used to manipulate infrared light.

New research by the Rice University lab of Qianfan Xu has produced a micron-scale spatial light modulator (SLM) like those used in sensing and imaging devices, but with the potential to run orders of magnitude faster. Unlike other devices in two-dimensional semiconducting chips, the Rice chips work in three-dimensional "free space."

Xu and his Rice colleagues detailed their antenna-on-a-chip for light modulation this week in Nature's open-access, online journal Scientific Reports.

The manipulation of light has become central to the information economy. Think about light-reflecting compact discs and their video variants and all the ways lasers are used, from sensing to security to surgery. Light carries data through optical fibers for telecommunications and signals on the molecular scale as photonics techniques improve. Light-emitting diodes power (for viewers clutching infrared remotes) and are beginning to replace the inefficient in homes.

But in the computer space, light has been bound and gagged by two-dimensional circuitry, tied to waveguides that move it from here to there, Xu said. He and his colleagues point out in the new paper that 2-D systems fail to take advantage of "the massive multiplexing capability of optics" made possible by the fact that "multiple can propagate in the same space without affecting each other."

The researchers see great potential for free-space SLMs in imaging, display, holographic, measurement and remote sensing applications.

An illustration shows the design of Rice University researchers' antenna-on-a-chip for spatial light modulation. The chip is able to process incident infrared light for signal processing at very high speeds. Credit Xu Group/Rice University

Simply put, the Rice team's microscopic SLM chips are nanoscale ribs of that form a cavity sitting between positively and negatively slabs connected to metallic electrodes. The positions of the ribs are subject to nanometer-scale "perturbations" and tune the resonating cavity to couple with incident light outside. That coupling pulls incident light into the cavity. Only infrared light passes through silicon, but once captured by the SLM, it can be manipulated as it passes through the chip to the other side. The electric field between the electrodes turns the transmission on and off at very high speeds.

Individual SLMs are analogous to pixels, and Xu, an assistant professor of electrical and computer engineering, sees the possibility of manufacturing chips that contain millions of them.

In conventional integrated photonics, "You have an array of pixels and you can change the transmission of each pixel at a very high speed," he said. "When you put that in the path of an optical beam, you can change either the intensity or the phase of the light that comes out the other side.

"LED screens are spatial light modulators; so are micromirror arrays in projectors, in which the mirrors rotate," he said. "Each pixel changes the intensity of , and you see an image. So an SLM is one of the basic elements of optical systems, but their switching speed is limited; some can get down to microseconds, which is okay for displays and projection.

"But if you really want to do information processing, if you want to put data on each pixel, then that speed is not good enough." Xu said the Rice team's device "can potentially modulate a signal at more than 10 gigabits per second.

"What we show here is very different from what people have been doing," he said. "With this device, we can make very large arrays with high yield. Our device is based on silicon and can be fabricated in a commercial CMOS factory, and it can run at very high speed. We think this can basically scale up the capability of optical information processing systems by an order of several magnitudes."

As an example, he suggested the device could give the single-pixel camera in development at Rice – which at the beginning took eight hours to process an image – the ability to handle real-time video.

"Or you could have an array of a million pixels, and essentially have a million channels of data throughput in your system, with all this signal processing in parallel," he said. "If each pixel only runs at kilohertz speeds, you don't get much of an advantage compared with microelectronic systems. But if each pixel is working at the gigahertz level, it's a different story."

Though Xu's antennas would not be suitable for general computing, he said, they could be capable of optical processing tasks that are comparable in power to supercomputers. "Optical information processing is not very hot," he admitted. "It's not fast-developing right now like plasmonics, nanophotonics, those areas. But I hope our device can put some excitement back into that field."

Explore further: Finding faster-than-light particles by weighing them

More information: www.nature.com/srep/2012/12111… /full/srep00855.html

Related Stories

3-D, after-the-fact focus image sensors invented

Apr 03, 2012

(PhysOrg.com) -- At the heart of digital photography is a chip called an image sensor that captures a map of the intensity of the light as it comes through the lens and converts it to an electronic signal.

Photonics: Pump up the bandwidth

Jun 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Zarabtul
1 / 5 (2) Nov 16, 2012
so my 30 yr. ban is up or the site is gone...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.