Structure discovered for promising tuberculosis drug target

October 25, 2012
This is a 3-D model of the outside surface of the enzyme that helps M. tuberculosis bacteria resist common antibiotics. Blue indicates positively charged atoms; red indicates negatively charged atoms. A peptidoglycan (green) is bound inside the enzyme’s active site. Credit: Mario A. Bianchet

Researchers at Johns Hopkins have figured out the three-dimensional shape of the protein responsible for creating unique bonds within the cell wall of the bacteria that cause tuberculosis. The bonds make the bacteria resistant to currently available drug therapies, contributing to the alarming rise of these super-bacteria throughout the world.

With the in hand, the scientists say, designers have a clear way forward for weakening the and killing these . Their results are reported in a paper published online Oct. 25 in Structure.

"We've known for a while that this protein would make a good , but without a structural model, drug discovery is like blindly choosing random objects to fit into a small hole of unknown shape and size. The results of our study have removed the blindfold," says L. Mario Amzel, Ph.D., professor and director of the Department of Biophysics and at The Johns Hopkins University School of Medicine.

The Johns Hopkins team used a technique called X-ray crystallography to scatter radiation off a specially prepared portion of the enzyme that forms the unique molecular bonds within the cell wall of Mycobacterium tuberculosis. They then used information about the direction and intensity of the radiation scattered to build a 3-D model of the arrangement of atoms in the enzyme.

Mario A. Bianchet, Ph.D., assistant professor of neurology at Johns Hopkins and a member of the research team, says the challenge of is that most of the long and costly standard drug treatment is just to get rid of the roughly 1 percent of bacteria that persist after the first week of a patient's treatment. "The 'persisters' resist in part because of unique bonds within their cell walls. Their cell walls form a thick, three-layered boundary between the bacteria and the outside world, including a middle layer of interlocking molecules, called peptidoglycans, that form a network resembling a chain-link fence," says Bianchet.

Peptidoglycans are long chains of individual sugar molecules with short protein branches extending from every other sugar on alternating sides of the chain. Specific enzymes bond the protein branches to each other to create a meshwork. In most species of bacteria, Amzel says, the majority of the bonds between these branches are created between position 4 on one branch and position 3 on an opposing branch. In M. tuberculosis, however, the majority of the bonds are created between positions 3 on both branches. The most common antibiotics interfere with the enzyme that creates the 4-3 bonds, which is enough to destabilize the cell wall and kill most of the TB bacteria.

The bacteria that persist have a particularly high level of 3-3 bonds between the peptidoglycan chains in their cell walls. These 3-3 bonds are created by a different enzyme, the one that Amzel and Bianchet studied, which is not specifically targeted by any current drugs. In addition to showing the structure of the enzyme, the team also showed a peptidoglycan molecule inside the action site where the 3-3 bonds are made, giving drug designers even more details about the way the protein works.

Amzel adds that "beyond fighting TB, the structure of this enzyme may help us fight other disease-causing that have similar enzymes, such as Enterococcus faecium and the spore-forming, drug-resistant Clostridium difficile."

Explore further: Worth a thousand words: Hopkins researchers paint picture of cancer-promoting culprit

More information: Structure doi: 10.1016/j.str.2012.09.016

Related Stories

Structural study of anthrax yields new antibiotic target

January 28, 2008

Researchers studying anthrax knew they were onto something when they discovered an opponent the bacterium couldn’t outwit. Probing a bit deeper, they discovered this was because the attacker was interacting with something ...

Energy-saving bacteria resist antibiotics

September 3, 2008

Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed. The moonlighting activity of one enzyme from the tuberculosis bacterium ...

Johns Hopkins team finds new way to attack TB (w/ Video)

March 24, 2010

Suspecting that a particular protein in tuberculosis was likely to be vital to the bacteria's survival, Johns Hopkins scientists screened 175,000 small chemical compounds and identified a potent class of compounds that selectively ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.