Researchers simulate neutron stars' 'gigantic' magnetic fields

Oct 12, 2012
Conceptual image of a neutron star – crucial characteristics of such stars can now be simulated and studied on earth. Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

Scientists from the universities of Kiel and Düsseldorf (both Germany) have developed a method to simulate gigantic magnetic fields that normally occur on neutron stars only. The physicists Professor Hartmut Löwen (Heinrich-Heine-Universität Düsseldorf) and Professor Michael Bonitz (Kiel University) have now published these results in the journal Physical Review Letters. In the article they show: when small particles in complex plasmas are set into rotation they behave as if they were exposed to a huge magnetic field.

Neutron stars belong to the most extreme objects in space: even though they are only 20 kilometers in diameter, they are up to three times heavier than the sun. At the same time, they have large magnetic fields up to 300 million times stronger than the earth's magnetic field.

The physicists from Düsseldorf and Kiel have come up with an idea how effects of such extreme conditions can be examined in laboratories on earth. They insert small particles of only a few micrometers into a complex plasma and cause them to rotate. According to theory and computer , the particles should – in this constellation – be exposed to similar forces as if they were located in a large magnetic field. It would not even be necessary to create a magnetic field at all.

The method has been already verified by experiments of Professor Alexander Piel (Kiel University) and can now be used to study the characteristics of ' magnetic fields. For physicists, this means that they can now for the first time study both extreme matter "conditions" and the behavior of particles therein on earth.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel (2012): "Magnetizing a complex plasma without a magnetic field", Phys. Rev. Lett. 109, 155003, prl.aps.org/abstract/PRL/v109/i15/e155003

add to favorites email to friend print save as pdf

Related Stories

Are pulsars giant permanent magnets?

Nov 22, 2011

Some of the most bizarre phenomenon in the universe are neutron stars. Very few things in our universe can rival the density in these remnants of supernova explosions. Neutron stars emit intense radiation ...

Neutrons escaping to a parallel world?

Jun 15, 2012

In a paper recently published in European Physical Journal C, researchers hypothesised the existence of mirror particles to explain the anomalous loss of neutrons observed experimentally. The existence of such mirror matter ...

Researchers make magnetic fields breakthrough

Aug 20, 2010

(PhysOrg.com) -- Researchers at the University of Dundee have made a breakthrough in the study of magnetic fields, which enhances our understanding of how stars, including the Sun, work.

Mysterious pulsar with hidden powers discovered

Oct 14, 2010

Dramatic flares and bursts of energy - activity previously thought reserved for only the strongest magnetized pulsars - has been observed emanating from a weakly magnetised, slowly rotating pulsar. The international ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0