Researchers simulate neutron stars' 'gigantic' magnetic fields

Oct 12, 2012
Conceptual image of a neutron star – crucial characteristics of such stars can now be simulated and studied on earth. Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

Scientists from the universities of Kiel and Düsseldorf (both Germany) have developed a method to simulate gigantic magnetic fields that normally occur on neutron stars only. The physicists Professor Hartmut Löwen (Heinrich-Heine-Universität Düsseldorf) and Professor Michael Bonitz (Kiel University) have now published these results in the journal Physical Review Letters. In the article they show: when small particles in complex plasmas are set into rotation they behave as if they were exposed to a huge magnetic field.

Neutron stars belong to the most extreme objects in space: even though they are only 20 kilometers in diameter, they are up to three times heavier than the sun. At the same time, they have large magnetic fields up to 300 million times stronger than the earth's magnetic field.

The physicists from Düsseldorf and Kiel have come up with an idea how effects of such extreme conditions can be examined in laboratories on earth. They insert small particles of only a few micrometers into a complex plasma and cause them to rotate. According to theory and computer , the particles should – in this constellation – be exposed to similar forces as if they were located in a large magnetic field. It would not even be necessary to create a magnetic field at all.

The method has been already verified by experiments of Professor Alexander Piel (Kiel University) and can now be used to study the characteristics of ' magnetic fields. For physicists, this means that they can now for the first time study both extreme matter "conditions" and the behavior of particles therein on earth.

Explore further: IHEP in China has ambitions for Higgs factory

More information: H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel (2012): "Magnetizing a complex plasma without a magnetic field", Phys. Rev. Lett. 109, 155003, prl.aps.org/abstract/PRL/v109/i15/e155003

add to favorites email to friend print save as pdf

Related Stories

Are pulsars giant permanent magnets?

Nov 22, 2011

Some of the most bizarre phenomenon in the universe are neutron stars. Very few things in our universe can rival the density in these remnants of supernova explosions. Neutron stars emit intense radiation ...

Neutrons escaping to a parallel world?

Jun 15, 2012

In a paper recently published in European Physical Journal C, researchers hypothesised the existence of mirror particles to explain the anomalous loss of neutrons observed experimentally. The existence of such mirror matter ...

Researchers make magnetic fields breakthrough

Aug 20, 2010

(PhysOrg.com) -- Researchers at the University of Dundee have made a breakthrough in the study of magnetic fields, which enhances our understanding of how stars, including the Sun, work.

Mysterious pulsar with hidden powers discovered

Oct 14, 2010

Dramatic flares and bursts of energy - activity previously thought reserved for only the strongest magnetized pulsars - has been observed emanating from a weakly magnetised, slowly rotating pulsar. The international ...

Recommended for you

IHEP in China has ambitions for Higgs factory

12 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

14 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

15 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

18 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0