Fish skin structure explains biological cloaking

Oct 21, 2012
Credit: © 1994 Monterey Bay Aquarium/Rick Browne

The highly effective optical means by which silvery fish, such as the European sardine and Atlantic herring, camouflage themselves from predators is explained this month in Nature Photonics.

Reflective surfaces polarize , a phenomenon that fishermen or photographers overcome by using polarizing sunglasses or polarizing filters to cut our reflective glare. However, PhD student Tom Jordan from the Bristol Centre for Complexity Sciences and his supervisors Professor Julian Partridge and Dr Nicholas Roberts in Bristol's School of Biological Sciences found that these silvery fish have overcome this basic law of reflection – an adaptation that may help them evade predators.

Previously, it was thought that the fish's skin – which contains "multilayer" arrangements of reflective guanine crystals – would fully polarize light when reflected. As the light becomes polarized, there should be a drop in reflectivity.

The Bristol researchers found that the skin of sardines and herring contain not one but two types of guanine crystal – each with different . By mixing these two types, the fish's skin doesn't polarize the reflected light and maintains its high reflectivity.

Dr Roberts said: "We believe these species of fish have evolved this particular multilayer structure to help conceal them from predators, such as dolphin and tuna. These fish have found a way to maximize their reflectivity over all angles they are viewed from. This helps the fish best match the light environment of the , making them less likely to be seen."

As a result of this ability, the skin of silvery fish could hold the key to better . Tom Jordan said: "Many modern day optical devices such as LED lights and low loss optical fibres use these non-polarizing types of reflectors to improve efficiency. However, these man-made reflectors currently require the use of materials with specific optical properties that are not always ideal. The mechanism that has evolved in fish overcomes this current design limitation and provides a new way to manufacture these non-polarizing reflectors."

Explore further: Laser device may end pin pricks, improve quality of life for diabetics

More information: 'Non-polarizing broadband multilayer reflectors in fish' by T.M. Jordan, J.C. Partridge and N.W. Roberts in Nature Photonics, DOI: 10.1038/nphoton.2012.260

Related Stories

Spookfish uses mirrors for eyes

Jan 07, 2009

A remarkable new discovery shows the four-eyed spookfish to be the first vertebrate ever found to use mirrors, rather than lenses, to focus light in its eyes.

Sparkly Spiders and Photonic Fish

Dec 09, 2009

(PhysOrg.com) -- Scientists in Israel and the UK have uncovered the details of how certain fish and spiders create their iridescent scales and silvery skins.

Study: Squid are masters of disguise

Sep 25, 2006

U.S. marine scientists say squid are masters of disguise, using their pigmented skin cells to camouflage themselves nearly instantaneously from predators.

Recommended for you

Laser makes microscopes way cooler

Aug 15, 2014

(Phys.org) —Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

User comments : 0