Save your day: Mid-ocean creatures control light to avoid becoming snacks

November 10, 2011
Japetella heathi, an 80 mm octopus found in the mesopelagic zone (600-1000 meters down), can rapidly shift from transparent and reflective to reddish opaque in the presence of light from bioluminescent predators like Diaphus, the headlight fish. Credit: Sarah Zylinski, Duke University

If you're a snack-sized squid or octopus living in the ocean zone where the last bit of daylight gives way, having some control over your reflection could be a matter of life and death.

Most predators cruising 600 to 1,000 meters below the surface spot the silhouette of their prey against the light background above them. But others use searchlights mounted on their heads.

Being transparent and a little bit reflective is a good defense against the silhouette-spotters, but it would be deadly against the "headlight fish," says Duke postdoctoral researcher Sarah Zylinski.

Transparency is the default state of both Japetella heathi, a bulbous, short-armed, 3-inch octopus, and Onychoteuthis banksii, a 5-inch squid found at these depths. Viewed from below against the light background, these animals are as invisible as they can be. Their eyes and guts, which are impossible to make clear, are instead reflective. But when hit with a flash of bluish light like that produced by headlight fish, they turn on skin pigments, called chromatophores, to become red in the blink of an eye.

During ship-board experiments over the Peru-Chile trench in 2010, Zylinski shined blue-filtered LED light on specimens of both creatures to watch them rapidly go from clear to opaque. When the light was removed, they immediately reverted to transparent. On a second research cruise in 2011 in the Sea of Cortez, Zylinski measured the of the octopuses and found they reflected twice as much light in their transparent state as in the opaque state.

Zylinski experimented with 15 to 20 different species of cephalopod pulled up from the deep by the research ships, but only these two responded to the blue light. "I went through several things I thought would stimulate behaviors," she says. Shallow-water cephalopods (squid, ocotopi and cuttlefish) will change their for a shadow or shape passing overhead, but these deeper water animals don't, Zylinski says. The animals could be seen tracking the movements of probes around them, but it was only the light that made them switch on the their pigments.

Zylinski next would like to investigate the link between transparency and habitat depth for the Japetella octopus. "Smaller young animals are found higher in the water column and have fewer chromatophores, so they are more reliant on transparency, which makes sense because there won't be predators using searchlights there," Zylinski says. But the mature adults have a higher density of chromatophores making them potentially more opaque and they can be found in deeper waters (below 800 meters) where bioluminescence becomes the dominant source.

Explore further: Octopus and kin inspire new camouflage strategies for military applications

More information: "Mesopelagic Cephalopods Switch Between Transparency and Pigmentation to Optimize Camouflage in the Deep," Sarah Zylinski and Sönke Johnsen. Current Biology 21, Nov. 22, 2011. DOI: 10.1016/j.cub.2011.10.014

Related Stories

Studying 'squid skin' to create new camouflage patterns

May 19, 2011

As an octopus, a squid, or a cuttlefish moves around a reef in the ocean, it instantly camouflages itself against the background. Known as cephalopods, these animals have the extraordinary ability to conceal themselves from ...

Study: Squid are masters of disguise

September 25, 2006

U.S. marine scientists say squid are masters of disguise, using their pigmented skin cells to camouflage themselves nearly instantaneously from predators.

Recommended for you

Scientists create first stable semisynthetic organism

January 23, 2017

Life's genetic code has only ever contained four natural bases. These bases pair up to form two "base pairs"—the rungs of the DNA ladder—and they have simply been rearranged to create bacteria and butterflies, penguins ...

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

Research describes missing step in how cells move their cargo

January 23, 2017

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

Lab charts the anatomy of three molecular channels

January 23, 2017

Using a state-of-the-art imaging technology in which molecules are deep frozen, scientists in Roderick MacKinnon's lab at Rockefeller University have reconstructed in unprecedented detail the three-dimensional architecture ...

Immune defense without collateral damage

January 23, 2017

Researchers from the University of Basel in Switzerland have clarified the role of the enzyme MPO. In fighting infections, this enzyme, which gives pus its greenish color, produces a highly aggressive acid that can kill pathogens ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.