Towards replacing silicon with graphene

Sep 28, 2012 by Glenn Wells/carol B. Eckmann
Grafene consists of a single layer of carbon atoms. Credit: Wikimedia Commons

Norwegian researchers are the world's first to develop a method for producing semiconductors from graphene. This finding may revolutionize the technology industry.

The method involves growing semiconductor- on graphene. To achieve this, researchers "bomb" the graphene surface with atoms and arsenic molecules, thereby creating a network of minute nanowires.

The result is a one-micrometre thick hybrid material which acts as a semiconductor. By comparison, the silicon semiconductors in use today are several hundred times thicker. The semiconductors' ability to conduct electricity may be affected by temperature, light or the addition of other atoms

Graphene is the thinnest material known, and at the same time one of the strongest. It consists of a single layer of and is both pliable and transparent. The material conducts electricity and heat very effectively. And perhaps most importantly, it is very inexpensive to produce.

This video is not supported by your browser at this time.
This video explains the new material. (Video: CrayNano AS)

"Given that it's possible to make semiconductors out of graphene instead of silicon, we can make semiconductor components that are both cheaper and more effective than the ones currently on the market," explains Helge Weman of the Norwegian University of Science and Technology (NTNU). Dr Weman is behind the breakthrough discovery along with Professor Bjørn-Ove Fimland.

"A material comprising a pliable base that is also transparent opens up a world of opportunities, one we have barely touched the surface of," says Dr Weman. "This may bring about a revolution in the production of and LED components. Windows in traditional houses could double as or a . Mobile phone screens could be wrapped around the wrist like a watch. In short, the potential is tremendous."

Huge interest among electronics giants

The researchers will now begin to create prototypes directed towards specific areas of application. They have been in contact with giants in the such as Samsung and IBM. "There is tremendous interest in producing semiconductors out of graphene, so it shouldn't be difficult to find collaborative partners," Dr Weman adds.

The researchers are hoping to have the new semiconductor hybrid materials on the commercial market in roughly five years.

Explore further: Nanostructure enlightening dendrite-free metal anode

add to favorites email to friend print save as pdf

Related Stories

Researchers grow semiconductors on graphene

Sep 10, 2012

Researchers at the Norwegian University of Science and Technology (NTNU) have patented and are commercializing GaAs nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors ...

Researchers devise a way to a create graphene transistor

Jul 18, 2012

(Phys.org) -- Researchers in Germany appear to have found a way to create a monolithic (integrated) graphene transistor, using a lithographic process applied to silicon carbide, a breakthrough that could lead ...

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

UH professor taking next step with graphene research

Oct 19, 2010

The 2010 Nobel Prize in Physics went to the two scientists who first isolated graphene, one-atom-thick crystals of graphite. Now, a researcher with the University of Houston Cullen College of Engineering is trying to develop ...

Recommended for you

Relaxing DNA strands by using nano-channels

20 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0