Changes in water chemistry leave lake critters defenseless

September 6, 2012

Imagine that the players on your favourite football team were smaller than their opponents, and had to play without helmets or pads. Left defenseless, they would become easy prey for other teams. Similarly, changes in Canadian lake water chemistry have left small water organisms vulnerable to their predators, which may pose a serious environmental threat, according to a new study.

"At low levels the organisms grow slower and cannot build their armour," says study lead author Howard Riessen, professor of biology, SUNY College at Buffalo. "Without suitable armour, they are vulnerable to ambush by predators," he says.

Riessen and colleagues, including York University biology Professor Norman Yan, studied the effect of changes in on plankton prey defenses. Specifically, they examined how lower calcium concentrations affect () exoskeleton development. These low calcium levels are caused by loss of calcium from , a consequence of decades of acid rain and multiple cycles of logging and forest growth. The results are published this week in the .

"Calcium is a critical element for Daphnia and many other crustaceans," Riessen says. "Daphnia build their exoskeletons, which include some defensive spines, with calcium to protect themselves from predators. Where are low, the Daphnia have softer, smaller, exoskeletons with fewer defensive spines, making them an easy snack."

Why do plankton matter? Yan, the study's senior author and a Fellow of the Royal Society of Canada, emphasizes that the tiny creatures are critical to our survival. "Without plankton, humans would be quite hungry, and perhaps even dead. Much of the world's photosynthesis, the basis of all of our food, comes from the ocean's plankton. The oxygen in every other breath we take is a product of phytoplankton photosynthesis," says Yan.

This phenomenon of reduced calcium is also playing out on a much larger scale in the world's oceans, he notes. "Increases in ocean acidity are complicating calcium acquisition by marine life, which is an under-reported effect of global carbon dioxide emissions. Thus marine plankton may also find themselves more vulnerable to predators," he says.

The public is used to stories about changes in water chemistry that lead to large-scale fish kills, says Riessen. "These changes are more insidious. Daphnia might not be a household name, but they are food for fish, and they help keep our lakes clean. Changing the balance between Daphnia and their predators marks a major change in lake systems."

Explore further: Ocean acidification could have broad effects on marine ecosystems

Related Stories

Fish guts explain marine carbon cycle mystery

January 15, 2009

Research published today reveals the major influence of fish on maintaining the delicate pH balance of our oceans, vital for the health of coral reefs and other marine life.

Surprises from the ocean: Marine plankton and ocean pH

June 21, 2011

The world's oceans support vast populations of single-celled organisms (phytoplankton) that are responsible, through photosynthesis, for removing about half of the carbon dioxide that is produced by burning fossil fuels – ...

Scientists uncover an unhealthy herds hypothesis

June 23, 2011

Biologists worldwide subscribe to the healthy herds hypothesis, the idea that predators can keep packs of prey healthy by removing the weak and the sick. This reduces the chance disease will wipe out the whole herd, but could ...

Loss of 'lake lawnmowers' leads to algae blooms

September 28, 2011

Unprecedented algae growth in some lakes could be linked to the decline of water calcium levels and the subsequent loss of an important algae-grazing organism that helps keep blooms at bay.

Recommended for you

Sixth sense: How do we sense electric fields?

October 13, 2015

A variety of animals are able to sense and react to electric fields, and living human cells will move along an electric field, for example in wound healing. Now a team lead by Min Zhao at the UC Davis Institute for Regenerative ...

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.