Increased sediment and nutrients delivered to bay as Susquehanna reservoirs near sediment capacity

Aug 30, 2012

Reservoirs near the mouth of the Susquehanna River just above Chesapeake Bay are nearly at capacity in their ability to trap sediment. As a result, large storms are already delivering increasingly more suspended sediment and nutrients to the Bay, which may negatively impact restoration efforts.

Too many nutrients rob the Bay of oxygen needed for fish and, along with , cloud the waters, disturbing the habitat of underwater plants crucial for aquatic life and waterfowl.

"The upstream have served previously to help reduce nutrient pollutant loads to the Chesapeake Bay by trapping sediment and the pollutants attached to them behind dams," explained USGS Director Marcia McNutt. "Now that these reservoirs are filling to capacity with sediment, they have become much less effective at preventing nutrient-rich sediments from reaching the Bay. Further progress in meeting the goals for improving in the Chesapeake will be more difficult to achieve as a result."

"It has been understood for many years that as the reservoirs on the Lower Susquehanna River fill with sediment, there will be a substantial decrease in their ability to limit the influx of sediment and nutrients, especially phosphorus, to the Chesapeake Bay," said Bob Hirsch, research hydrologist and author of the report. "Analysis of USGS water quality data from the Susquehanna River, particularly the data from Lee in September 2011, provides evidence that the increases in nutrient and sediment delivery are not just a theoretical issue for future consideration, but are already underway."

According to a new USGS report, the Susquehanna River delivered more phosphorus and sediment to the Bay during 2011 than from than any other year since monitoring began in 1978. Flooding from Tropical Storm Lee made up a large fraction of the Susquehanna River's inputs to the Bay for both 2011 and over the last decade. During the flooding the Susquehanna River delivered about 2 percent of total water to the Bay for the last decade; however, it delivered 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment.

According to the report, from 1996-2011 total phosphorus moving into the Bay has increased by 55 percent, and suspended sediment has increased by 97 percent. Over this time period, total nitrogen decreased by about 3 percent overall, but showed increases during large events.

These results represent the combined effects of the changes in sediment within the reservoirs, as well as changes in the sources of these constituents upstream. Another recent USGS study reported about a 25 percent reduction in nutrients and sediment concentrations just upstream of the reservoirs, reflecting the benefit of actions to improve water quality in the upper portion of the Susquehanna River watershed.

"Progress on reducing loadings of these pollutants from the Susquehanna River Basin depends on efforts made to limit the loadings in the watershed, as well as the effects of the downstream reservoirs," said Hirsch. "In general, the changes we have observed in the reservoirs and the resulting greater impact of storms are already overshadowing the ongoing progress being made in the watershed to reduce the amount of nutrients and sediments entering the Bay."

Sediment and nutrient loadings from the Susquehanna River are crucial to understanding the status and progress of water quality in the Chesapeake Bay. On average, the Susquehanna River contributes nearly 41 percent of the nitrogen, 25 percent of the phosphorus, and 27 percent of the sediment load to the Bay.

"The findings of this USGS study increase the urgency of identifying and implementing effective management options for addressing the filling reservoirs," said Bruce Michael, director, Resource Assessment Service for the Maryland Department of Natural Resources. "The Lower Susquehanna River Watershed Assessment study, a 3-year partnership of federal, state, private sector, and non-governmental organizations, is developing potential management options for extending the sediment-holding capacity of the reservoirs. The USGS information is critical for guiding the strategies undertaken by the Chesapeake Bay Program to assure that the actions taken in the watershed will serve to meet restoration goals."

The lower reaches of the Susquehanna River, just upstream from , include three reservoirs: Safe Harbor and Holtwood Dam in Pennsylvania and Conowingo Dam in Maryland. Over the past several decades these reservoirs have been gradually filling with sediment.

While the reservoirs are filling, they are a trap for sediment and the nutrients attached to that sediment. As a reservoir approaches its sediment storage capacity, it can't hold as much sediment. When reservoirs are near capacity, significant flow events, such as flooding from Tropical Storm Lee, have greater potential to cause scour, or the sudden removal of large amounts of sediment, allowing that sediment and attached nutrients to flow out of the reservoirs and into the Bay.

Additionally, as the reservoir becomes filled, the channel that water flows through gets smaller. As a result, for any given amount of flow, the water moves through the channel faster, further increasing the likelihood of scour. Higher velocities also result in lower rates of settling, decreasing the amount of sediment that will be deposited.

This new report is based on 34 years of monitoring streamflow and water quality for the Susquehanna River by the USGS and its state and local partners. The report compares nutrients and sediment behavior during high flow events, such as the flood after Tropical Storm Lee in September of 2011, the high flows of March 2011, and Hurricane Ivan in 2004, with high flow conditions of the past.

Explore further: Predicting bioavailable cadmium levels in soils

More information: The report, titled Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality, can be found at pubs.usgs.gov/sir/2012/5185

add to favorites email to friend print save as pdf

Related Stories

Three Gorges Dam shrinking Yangtze delta

May 21, 2007

Chinese scientists have determined how China's Three Gorges Dam -- the world's largest dam -- affects downstream sediment delivery in the Yangtze River.

Smithsonian study: Sediment prediction tools off the mark

Jan 29, 2008

A recent study led by Smithsonian ecologist Kathy Boomer suggests it is time for a change in at least one area of watershed management. Boomer has been examining the tools scientists and managers use to predict how much sediment ...

On ancient Susquehanna, flooding's a frequent fact

Sep 10, 2011

(AP) -- Early settlers called the Susquehanna River "a mile wide and a foot deep." It's just a folk saying, but it hints at the forces behind a river that is, in fact, exceptionally likely to flood.

Recommended for you

Predicting bioavailable cadmium levels in soils

16 hours ago

New Zealand's pastoral landscapes are some of the loveliest in the world, but they also contain a hidden threat. Many of the country's pasture soils have become enriched in cadmium. Grasses take up this toxic heavy metal, ...

Oil drilling possible 'trigger' for deadly Italy quakes

20 hours ago

Italy's Emilia-Romagna region on Tuesday suspended new drilling as it published a report that warned that hydrocarbon exploitation may have acted as a "trigger" in twin earthquakes that killed 26 people in ...

Snow is largely a no-show for Iditarod Trail Sled Dog Race

20 hours ago

On March 1, 65 mushers and their teams of dogs left Anchorage, Alaska, on a quest to win the Iditarod—a race covering 1,000 miles of mountain ranges, frozen rivers, dense forest, tundra and coastline. According ...

UN weather agency warns of 'El Nino' this year

21 hours ago

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Study shows less snowpack will harm ecosystem

22 hours ago

(Phys.org) —A new study by CAS Professor of Biology Pamela Templer shows that milder winters can have a negative impact both on trees and on the water quality of nearby aquatic ecosystems, far into the warm growing season.

User comments : 0

More news stories

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.