Researchers discover how cancer cells 'hijack' a mechanism to grow

Aug 14, 2012

Researchers at Moffitt Cancer Center and colleagues at the University of South Florida have discovered a mechanism that explains how some cancer cells "hijack" a biological process to potentially activate cell growth and the survival of cancer gene expression.

Their study appeared in a recent issue of Nature Structural & Molecular Biology.

The newly discovered mechanism involves histones (highly alkaline proteins found in cells that package and order DNA), and in this case, histone H2B, one of the five main histone proteins involved in the structure of chromatin. Chromatin is the combination of DNA and proteins that makes up the contents of the nucleus of a eukaryotic cell.

"Eukaryotic cells have evolved multiple mechanisms to maintain histone abundance at appropriate levels," said study lead author Nupam P. Mahajan, Ph.D., member of Moffitt's Molecular Oncology and Drug Discovery Program. "One of the best-studied mechanisms in higher eukaryotic cells is that the histone transcription or synthesis is switched off once a cell completes synthesis of DNA, however, how cells terminate histone synthesis is not fully clear."

The research team discovered that a modified histone itself regulates histone synthesis. The modification is histone H2B phosphorylation (in this case the process of adding a phosphate to a protein molecule) at tyrosine37 (tyrosine is one of 22 amino acids), which is critical for suppression of core histone mRNA synthesis. Additional experiments with mammalian and yeast cells have confirmed that the mechanism they discovered is widely operational and evolutionarily conserved.

The significance of this process in became evident when they identified a tyrosine kinase, WEE1, as being a critical regulator of the process. Tyrosine kinases are enzymes that can transfer a phosphate group and can operate as "on/off" switches in many cell functions. Tyrosine kinases regulate critical cell processes, including cell growth, proliferation and differentiation.

"We identified WEE1 as the tyrosine kinase that phosporylates H2B in both mammal and yeast cells," explained Mahajan.

WEE1 protein levels are tightly regulated in cells, and its role in the cell cycle is well-established, Mahajan said. "What we discovered is that WEE1 is also a novel modifier of histone H2B, and inhibition, or knockdown, which resulted in a loss of H2B Tyr-phosporylation and an increase in the transcription of multiple core histone genes."

"Our data reveals a previously unknown mechanism by which Tyr-37 phosphorylation results in suppression of histone gene transcription activity," explained Mahajan. "Histone shutoff would lower histone transcript levels and eliminate overproduction of core histones."

According to the researchers, theirs is the first demonstration of Tyr-phosphorylated histone H2B and an evaluation of its function. The work also uncovers a previously unknown function of WEE1, a cell regulator that has a dual role in maintaining histone transcript levels.

According to the researchers, cancer cells would benefit ("unchecked" in growth and proliferation) by having lower levels of histone proteins. These lower histone levels would result in less compaction of chromatin (the combination of DNA and proteins making a cell's nucleus) and the expression of genes that might be otherwise kept "in check" in normal cells.

"Increased expression of WEE1 protein, shown in glioblastomas and triple-negative breast cancers, for example, indicates that cancer cells have 'hijacked' this mechanism to lower histone levels and thus activate the growth and survival of cancer cells," concluded the researchers.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

More information: Nature Structural & Molecular Biology (2012) doi:10.1038/nsmb.2356

Related Stories

Scientists discover secret life of chromatin

Sep 01, 2011

Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.

New advances in the understanding of cancer progression

Apr 12, 2012

Researchers at the Hospital de Mar Research Institute (IMIM) have discovered that the protein LOXL2 has a function within the cell nucleus thus far unknown. They have also described a new chemical reaction of this protein ...

Researchers provide atomic view of a histone chaperone

Mar 01, 2012

Mayo Clinic researchers have gained insights into the function of a member of a family of specialized proteins called histone chaperones. Using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, they ...

Recommended for you

Researchers successfully clone adult human stem cells

4 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

7 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...